Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Enhanced expression of transferrin receptor 1 contributes to oncogenic signalling by sphingosine kinase 1

Abstract

Sphingosine kinase 1 (SK1) is a lipid kinase that catalyses the formation of sphingosine-1-phosphate (S1P). Considerable evidence has implicated elevated cellular SK1 in tumour development, progression and disease severity. In particular, SK1 has been shown to enhance cell survival and proliferation and induce neoplastic transformation. Although S1P has been found to have both cell-surface G-protein-coupled receptors and intracellular targets, the specific downstream pathways mediating oncogenic signalling by SK1 remain poorly defined. Here, using a gene expression array approach, we have demonstrated a novel mechanism whereby SK1 regulates cell survival, proliferation and neoplastic transformation through enhancing expression of transferrin receptor 1 (TFR1). We showed that elevated levels of SK1 enhanced total as well as cell-surface TFR1 expression, resulting in increased transferrin uptake into cells. Notably, we also found that SK1 activation and localization to the plasma membrane, which are critical for its oncogenic effects, are necessary for regulation of TFR1 expression specifically through engagement of the S1P G-protein coupled receptor, S1P2. Furthermore, we showed that blocking TFR1 function with a neutralizing antibody inhibits SK1-induced cell proliferation, survival and neoplastic transformation of NIH3T3 fibroblasts. Similar effects were observed following antagonism of S1P2. Together these findings suggest that TFR1 has an important role in SK1-mediated oncogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Pitson SM . Regulation of sphingosine kinase and sphingolipid signaling. Trends Biochem Sci 2011; 36: 97–107.

    Article  CAS  PubMed  Google Scholar 

  2. Olivera A, Kohama T, Edsall L, Nava V, Cuvillier O, Poulton S et al. Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J Cell Biol 1999; 147: 545–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xia P, Gamble JR, Wang L, Pitson SM, Moretti PA, Wattenberg BW et al. An oncogenic role of sphingosine kinase. Curr Biol 2000; 10: 1527–1530.

    Article  CAS  PubMed  Google Scholar 

  4. Pitson SM, Powell JA, Bonder CS . Regulation of sphingosine kinase in hematological malignancies and other cancers. Anticancer Agents Med Chem 2011; 11: 799–809.

    Article  CAS  PubMed  Google Scholar 

  5. Chan H, Pitson SM . Post-translational regulation of sphingosine kinases. Biochim Biophys Acta 2013; 1831: 147–156.

    Article  CAS  PubMed  Google Scholar 

  6. Pyne NJ, Pyne S . Sphingosine 1-phosphate and cancer. Nat Rev Cancer 2010; 10: 489–503.

    Article  CAS  PubMed  Google Scholar 

  7. Kohno M, Momoi M, Oo ML, Paik JH, Lee YM, Venkataraman K et al. Intracellular role for sphingosine kinase 1 in intestinal adenoma cell proliferation. Mol Cell Biol 2006; 26: 7211–7223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kawamori T, Osta W, Johnson KR, Pettus BJ, Bielawski J, Tanaka T et al. Sphingosine kinase 1 is up-regulated in colon carcinogenesis. FASEB J 2006; 20: 386–388.

    Article  CAS  PubMed  Google Scholar 

  9. Kawamori T, Kaneshiro T, Okumura M, Maalouf S, Uflacker A, Bielawski J et al. Role for sphingosine kinase 1 in colon carcinogenesis. FASEB J 2009; 23: 405–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ponnusamy S, Selvam SP, Mehrotra S, Kawamori T, Snider AJ, Obeid LM et al. Communication between host organism and cancer cells is transduced by systemic sphingosine kinase 1/sphingosine 1-phosphate signalling to regulate tumour metastasis. EMBO Mol Med 2012; 4: 761–775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pchejetski D, Golzio M, Bonhoure E, Calvet C, Doumerc N, Garcia V et al. Sphingosine kinase-1 as a chemotherapy sensor in prostate adenocarcinoma cell and mouse models. Cancer Res 2005; 65: 11667–11675.

    Article  CAS  PubMed  Google Scholar 

  12. Baran Y, Salas A, Senkal CE, Gunduz U, Bielawski J, Obeid LM et al. Alterations of ceramide/sphingosine 1-phosphate rheostat involved in the regulation of resistance to imatinib-induced apoptosis in K562 human chronic myeloid leukemia cells. J Biol Chem 2007; 282: 10922–10934.

    Article  CAS  PubMed  Google Scholar 

  13. Pitman MR, Pitson SM . Inhibitors of the sphingosine kinase pathway as potential therapeutics. Curr Cancer Drug Targets 2010; 10: 354–367.

    Article  CAS  PubMed  Google Scholar 

  14. Pitson SM, Moretti PA, Zebol JR, Lynn HE, Xia P, Vadas MA et al. Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J 2003; 22: 5491–5500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pitson SM, Xia P, Leclercq TM, Moretti PA, Zebol JR, Lynn HE et al. Phosphorylation-dependent translocation of sphingosine kinase to the plasma membrane drives its oncogenic signalling. J Exp Med 2005; 201: 49–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Strub GM, Maceyka M, Hait NC, Milstien S, Spiegel S . Extracellular and intracellular actions of sphingosine-1-phosphate. Adv Exp Med Biol 2010; 688: 141–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pham DH, Moretti PA, Goodall GJ, Pitson SM . Attenuation of leakiness in doxycycline-inducible expression via incorporation of 3' AU-rich mRNA destabilizing elements. Biotechniques 2008; 45: 155–156, 8, 60 passim.

    Article  CAS  PubMed  Google Scholar 

  18. French KJ, Schrecengost RS, Lee BD, Zhuang Y, Smith SN, Eberly JL et al. Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res 2003; 63: 5962–5969.

    CAS  PubMed  Google Scholar 

  19. Pitson SM, Moretti PA, Zebol JR, Xia P, Gamble JR, Vadas MA et al. Expression of a catalytically inactive sphingosine kinase mutant blocks agonist-induced sphingosine kinase activation. A dominant-negative sphingosine kinase. J Biol Chem 2000; 275: 33945–33950.

    Article  CAS  PubMed  Google Scholar 

  20. Daniels TR, Delgado T, Rodriguez JA, Helguera G, Penichet ML . The transferrin receptor part I: biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin Immunol 2006; 121: 144–158.

    Article  CAS  PubMed  Google Scholar 

  21. Habeshaw JA, Lister TA, Stansfeld AG, Greaves MF . Correlation of transferrin receptor expression with histological class and outcome in non-Hodgkin lymphoma. Lancet 1983; 1: 498–501.

    Article  CAS  PubMed  Google Scholar 

  22. Ryschich E, Huszty G, Knaebel HP, Hartel M, Buchler MW, Schmidt J . Transferrin receptor is a marker of malignant phenotype in human pancreatic cancer and in neuroendocrine carcinoma of the pancreas. Eur J Cancer 2004; 40: 1418–1422.

    Article  CAS  PubMed  Google Scholar 

  23. Das Gupta A, Shah VI . Correlation of transferrin receptor expression with histologic grade and immunophenotype in chronic lymphocytic leukemia and non-Hodgkin’s lymphoma. Hematol Pathol 1990; 4: 37–41.

    CAS  PubMed  Google Scholar 

  24. Prior R, Reifenberger G, Wechsler W . Transferrin receptor expression in tumours of the human nervous system: relation to tumour type, grading and tumour growth fraction. Virchows Arch A Pathol Anat Histopathol 1990; 416: 491–496.

    Article  CAS  PubMed  Google Scholar 

  25. Wirth GJ, Schandelmaier K, Smith V, Burger AM, Fiebig HH . Microarrays of 41 human tumor cell lines for the characterization of new molecular targets: expression patterns of cathepsin B and the transferrin receptor. Oncology 2006; 71: 86–94.

    Article  CAS  PubMed  Google Scholar 

  26. Helpman L, Katz BZ, Safra T, Schreiber L, Levine Z, Nemzer S et al. Systematic antigenic profiling of hematopoietic antigens on ovarian carcinoma cells identifies membrane proteins for targeted therapy development. Am J Obstet Gynecol 2009; 201: 196.e1–196.e7.

    Article  Google Scholar 

  27. O’Donnell KA, Yu D, Zeller KI, Kim JW, Racke F, Thomas-Tikhonenko A et al. Activation of transferrin receptor 1 by c-Myc enhances cellular proliferation and tumorigenesis. Mol Cell Biol 2006; 26: 2373–2386.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Habashy HO, Powe DG, Staka CM, Rakha EA, Ball G, Green AR et al. Transferrin receptor (CD71) is a marker of poor prognosis in breast cancer and can predict response to tamoxifen. Breast Cancer Res Treat 2010; 119: 283–293.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou HJ, Wang Z, Li A . Dihydroartemisinin induces apoptosis in human leukemia cells HL60 via downregulation of transferrin receptor expression. Anticancer Drugs 2008; 19: 247–255.

    Article  PubMed  Google Scholar 

  30. Shen X, Zhu HF, He FR, Xing W, Li L, Liu J et al. An anti-transferrin receptor antibody enhanced the growth inhibitory effects of chemotherapeutic drugs on human non-hematopoietic tumor cells. Int Immunopharmacol 2008; 8: 1813–1820.

    Article  CAS  PubMed  Google Scholar 

  31. Callens C, Moura IC, Lepelletier Y, Coulon S, Renand A, Dussiot M et al. Recent advances in adult T-cell leukemia therapy: focus on a new anti-transferrin receptor monoclonal antibody. Leukemia 2008; 22: 42–48.

    Article  CAS  PubMed  Google Scholar 

  32. Jiang XP, Elliott RL, Head JF . Manipulation of iron transporter genes results in the suppression of human and mouse mammary adenocarcinomas. Anticancer Res 2010; 30: 759–765.

    CAS  PubMed  Google Scholar 

  33. van Dam EM, Ten Broeke T, Jansen K, Spijkers P, Stoorvogel W . Endocytosed transferrin receptors recycle via distinct dynamin and phosphatidylinositol 3-kinase-dependent pathways. J Biol Chem 2002; 277: 48876–48883.

    Article  CAS  PubMed  Google Scholar 

  34. El-Shewy HM, Johnson KR, Lee MH, Jaffa AA, Obeid LM, Luttrell LM . Insulin-like growth factors mediate heterotrimeric G protein-dependent ERK1/2 activation by transactivating sphingosine 1-phosphate receptors. J Biol Chem 2006; 281: 31399–31407.

    Article  CAS  PubMed  Google Scholar 

  35. Meyer zu Heringdorf D, Lass H, Kuchar I, Lipinski M, Alemany R, Rumenapp U et al. Stimulation of intracellular sphingosine-1-phosphate production by G-protein-coupled sphingosine-1-phosphate receptors. Eur J Pharmacol 2001; 414: 145–154.

    Article  CAS  PubMed  Google Scholar 

  36. Long JS, Fujiwara Y, Edwards J, Tannahill CL, Tigyi G, Pyne S et al. Sphingosine 1-phosphate receptor 4 uses HER2 (ERBB2) to regulate extracellular signal regulated kinase-1/2 in MDA-MB-453 breast cancer cells. J Biol Chem 2010; 285: 35957–35966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Salomone S, Waeber C . Selectivity and specificity of sphingosine-1-phosphate receptor ligands: caveats and critical thinking in characterizing receptor-mediated effects. Front Pharmacol 2011; 2: 9.

    PubMed  PubMed Central  Google Scholar 

  38. Trowbridge IS, Lopez F . Monoclonal antibody to transferrin receptor blocks transferrin binding and inhibits human tumor cell growth in vitro. Proc Natl Acad Sci USA 1982; 79: 1175–1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Trowbridge IS, Shackelford DA . Structure and function of transferrin receptors and their relationship to cell growth. Biochem Soc Symp 1986; 51: 117–129.

    CAS  PubMed  Google Scholar 

  40. Le Scolan E, Pchejetski D, Banno Y, Denis N, Mayeux P, Vainchenker W et al. Overexpression of sphingosine kinase 1 is an oncogenic event in erythroleukemic progression. Blood 2005; 106: 1808–1816.

    Article  CAS  PubMed  Google Scholar 

  41. Jarman KE, Moretti PA, Zebol JR, Pitson SM . Translocation of sphingosine kinase 1 to the plasma membrane is mediated by calcium- and integrin-binding protein 1. J Biol Chem 2010; 285: 483–492.

    Article  CAS  PubMed  Google Scholar 

  42. Pantopoulos K . Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci 2004; 1012: 1–13.

    Article  CAS  PubMed  Google Scholar 

  43. Takeshita A, Watanabe A, Takada Y, Hanazawa S . Selective stimulation by ceramide of the expression of the alpha isoform of retinoic acid and retinoid X receptors in osteoblastic cells. A role of sphingosine 1-phosphate-mediated AP-1 in the ligand-dependent transcriptional activity of these receptors. J Biol Chem 2000; 275: 32220–32226.

    Article  CAS  PubMed  Google Scholar 

  44. Okazaki F, Matsunaga N, Okazaki H, Utoguchi N, Suzuki R, Maruyama K et al. Circadian rhythm of transferrin receptor 1 gene expression controlled by c-Myc in colon cancer-bearing mice. Cancer Res 2010; 70: 6238–6246.

    Article  CAS  PubMed  Google Scholar 

  45. Bianchi L, Tacchini L, Cairo G . HIF-1-mediated activation of transferrin receptor gene transcription by iron chelation. Nucleic Acids Res 1999; 27: 4223–4227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ader I, Brizuela L, Bouquerel P, Malavaud B, Cuvillier O . Sphingosine kinase 1: a new modulator of hypoxia inducible factor 1alpha during hypoxia in human cancer cells. Cancer Res 2008; 68: 8635–8642.

    Article  CAS  PubMed  Google Scholar 

  47. Ader I, Malavaud B, Cuvillier O . When the sphingosine kinase 1/sphingosine 1-phosphate pathway meets hypoxia signaling: new targets for cancer therapy. Cancer Res 2009; 69: 3723–3726.

    Article  CAS  PubMed  Google Scholar 

  48. Michaud MD, Robitaille GA, Gratton JP, Richard DE . Sphingosine-1-phosphate: a novel nonhypoxic activator of hypoxia-inducible factor-1 in vascular cells. Arterioscler Thromb Vasc Biol 2009; 29: 902–908.

    Article  CAS  PubMed  Google Scholar 

  49. Takuwa N, Du W, Kaneko E, Okamoto Y, Yoshioka K, Takuwa Y . Tumor-suppressive sphingosine-1-phosphate receptor-2 counteracting tumor-promoting sphingosine-1-phosphate receptor-1 and sphingosine kinase 1—Jekyll Hidden behind Hyde. Am J Cancer Res 2011; 1: 460–481.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cattoretti G, Mandelbaum J, Lee N, Chaves AH, Mahler AM, Chadburn A et al. Targeted disruption of the S1P2 sphingosine 1-phosphate receptor gene leads to diffuse large B-cell lymphoma formation. Cancer Res 2009; 69: 8686–8692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li MH, Sanchez T, Milne GL, Morrow JD, Hla T, Ferrer F . S1P/S1P2 signaling induces cyclooxygenase-2 expression in Wilms tumor. J Urol 2009; 181: 1347–1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Salas A, Ponnusamy S, Senkal CE, Meyers-Needham M, Selvam SP, Saddoughi SA et al. Sphingosine kinase-1 and sphingosine 1-phosphate receptor 2 mediate Bcr-Abl1 stability and drug resistance by modulation of protein phosphatase 2A. Blood 2011; 117: 5941–5952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Young JC, Barral JM, Ulrich Hartl F . More than folding: localized functions of cytosolic chaperones. Trends Biochem Sci 2003; 28: 541–547.

    Article  CAS  PubMed  Google Scholar 

  54. Pitson SM, D’Andrea RJ, Vandeleur L, Moretti PA, Xia P, Gamble JR et al. Human sphingosine kinase: purification, molecular cloning and characterization of the native and recombinant enzymes. Biochem J 2000; 350 (Pt 2): 429–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Park HS, Park CH, Choi BR, Lim MS, Heo SH, Kim CH et al. Expression of heat shock protein 105 and 70 in malignant melanoma and benign melanocytic nevi. J Cutan Pathol 2009; 36: 511–516.

    Article  PubMed  Google Scholar 

  56. Jose-Eneriz ES, Roman-Gomez J, Cordeu L, Ballestar E, Garate L, Andreu EJ et al. BCR-ABL1-induced expression of HSPA8 promotes cell survival in chronic myeloid leukaemia. Br J Haematol 2008; 142: 571–582.

    Article  PubMed  Google Scholar 

  57. Muchemwa FC, Nakatsura T, Fukushima S, Nishimura Y, Kageshita T, Ihn H . Differential expression of heat shock protein 105 in melanoma and melanocytic naevi. Melanoma Res 2008; 18: 166–171.

    Article  CAS  PubMed  Google Scholar 

  58. Muchemwa FC, Nakatsura T, Ihn H, Kageshita T . Heat shock protein 105 is overexpressed in squamous cell carcinoma and extramammary Paget disease but not in basal cell carcinoma. Br J Dermatol 2006; 155: 582–585.

    Article  CAS  PubMed  Google Scholar 

  59. Huang WJ, Xia LM, Zhu F, Huang B, Zhou C, Zhu HF et al. Transcriptional upregulation of HSP70-2 by HIF-1 in cancer cells in response to hypoxia. Int J Cancer 2009; 124: 298–305.

    Article  CAS  PubMed  Google Scholar 

  60. Tran PL, Kim SA, Choi HS, Yoon JH, Ahn SG . Epigallocatechin-3-gallate suppresses the expression of HSP70 and HSP90 and exhibits anti-tumor activity in vitro and in vivo. BMC Cancer 2010; 10: 276.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sun J, Liu L, Jiang X, Chen D, Huang Y . Therapeutic effects of radiolabeled 17-allylamino-17-demethoxygeldanamycin on human H460 nonsmall-cell lung carcinoma xenografts in mice. Cancer Biother Radiopharm 2010; 25: 155–164.

    Article  CAS  PubMed  Google Scholar 

  62. Hosaka S, Nakatsura T, Tsukamoto H, Hatayama T, Baba H, Nishimura Y . Synthetic small interfering RNA targeting heat shock protein 105 induces apoptosis of various cancer cells both in vitro and in vivo. Cancer Sci 2006; 97: 623–632.

    Article  CAS  PubMed  Google Scholar 

  63. Schwock J, Pham NA, Cao MP, Hedley DW . Efficacy of Hsp90 inhibition for induction of apoptosis and inhibition of growth in cervical carcinoma cells in vitro and in vivo. Cancer Chemother Pharmacol 2008; 61: 669–681.

    Article  CAS  PubMed  Google Scholar 

  64. Loveridge C, Tonelli F, Leclercq T, Lim KG, Long JS, Berdyshev E et al. The sphingosine kinase 1 inhibitor 2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole induces proteasomal degradation of sphingosine kinase 1 in mammalian cells. J Biol Chem 2010; 285: 38841–38852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Persons DA, Allay JA, Allay ER, Ashmun RA, Orlic D, Jane SM et al. Enforced expression of the GATA-2 transcription factor blocks normal hematopoiesis. Blood 1999; 93: 488–499.

    CAS  PubMed  Google Scholar 

  66. Pitman MR, Barr RK, Gliddon BL, Magarey AM, Moretti PA, Pitson SM . A critical role for the protein phosphatase 2A B'alpha regulatory subunit in dephosphorylation of sphingosine kinase 1. Int J Biochem Cell Biol 2011; 43: 342–347.

    Article  CAS  PubMed  Google Scholar 

  67. Yang YH, Buckley MJ, Speed TP . Analysis of cDNA microarray images. Brief Bioinform 2001; 2: 341–349.

    Article  CAS  PubMed  Google Scholar 

  68. Smyth GK . Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W (eds) Bioinformatics and Computational Biology Solutions using R and Bioconductor. Springer, New York, NY, USA, 2005, pp 397–420.

    Chapter  Google Scholar 

  69. Smyth GK, Speed T . Normalization of cDNA microarray data. Methods 2003; 31: 265–273.

    Article  CAS  PubMed  Google Scholar 

  70. Smyth GK . Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol (e-pub ahead of print 12 February 2014; doi:10.2202/1544-6115.1027).

    Article  Google Scholar 

  71. Benjamini Y, Hochberg Y . Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 1995; 57: 289–300.

    Google Scholar 

  72. Pitman MR, Pham DH, Pitson SM . Isoform-selective assays for sphingosine kinase activity. Methods Mol Biol 2012; 874: 21–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fay Fuller Foundation, a University of Adelaide Postgraduate Scholarship (to DHP), Senior Research Fellowships (508098 and 1042589) and Project Grant (626936) from the National Health and Medical Research Council of Australia (to SMP). We thank Julia Zebol for technical assistance and Andrew Bert for assistance with Figure preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S M Pitson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pham, D., Powell, J., Gliddon, B. et al. Enhanced expression of transferrin receptor 1 contributes to oncogenic signalling by sphingosine kinase 1. Oncogene 33, 5559–5568 (2014). https://doi.org/10.1038/onc.2013.502

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.502

Keywords

This article is cited by

Search

Quick links