Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Novel fusion transcripts in human gastric cancer revealed by transcriptome analysis

Abstract

Gene fusion is involved in the development of various types of malignancies. Recent advances in sequencing technology have facilitated identification of gene fusions and have stimulated the research of this field in cancer. In the present study, we performed next-generation transcriptome sequencing in order to discover novel gene fusions in gastric cancer. A total of 282 fusion transcript candidates were detected from 12 gastric cancer cell lines by bioinformatic filtering. Among the candidates, we have validated 19 fusion transcripts, which are 7 inter-chromosomal and 12 intra-chromosomal fusions. A novel DUS4LBCAP29 fusion transcript was found in 2 out of 12 cell lines and 10 out of 13 gastric cancer tissues. Knockdown of DUS4LBCAP29 transcript using siRNA inhibited cell proliferation. Soft agar assay further confirmed that this novel fusion transcript has tumorigenic potential. We also identified that microRNA-coding gene PVT1, which is amplified in double minute chromosomes in SNU-16 cells, is recurrently involved in gene fusion. PVT1 produced six different fusion transcripts involving four different genes as fusion partners. Our findings provide better insight into transcriptional and genetic alterations of gastric cancer: namely, the tumorigenic effects of transcriptional read-through and a candidate region for genetic instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Mitelman F, Johansson B, Mertens F . The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 2007; 7: 233–245.

    Article  CAS  Google Scholar 

  2. Savage DG, Antman KH . Imatinib mesylate—a new oral targeted therapy. N Engl J Med 2002; 346: 683–693.

    Article  CAS  Google Scholar 

  3. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007; 448: 561–566.

    Article  CAS  Google Scholar 

  4. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 2010; 363: 1693–1703.

    Article  CAS  Google Scholar 

  5. Robinson DR, Kalyana-Sundaram S, Wu YM, Shankar S, Cao X, Ateeq B et al. Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat Med 2011; 17: 1646–1651.

    Article  CAS  Google Scholar 

  6. Edgren H, Murumagi A, Kangaspeska S, Nicorici D, Hongisto V, Kleivi K et al. Identification of fusion genes in breast cancer by paired-end RNA-sequencing. Genome Biol 2011; 12: R6.

    Article  CAS  Google Scholar 

  7. Pflueger D, Terry S, Sboner A, Habegger L, Esgueva R, Lin PC et al. Discovery of non-ETS gene fusions in human prostate cancer using next-generation RNA sequencing. Genome Res 2011; 21: 56–67.

    Article  CAS  Google Scholar 

  8. Kannan K, Wang L, Wang J, Ittmann MM, Li W, Yen L . Recurrent chimeric RNAs enriched in human prostate cancer identified by deep sequencing. Proc Natl Acad Sci USA 2011; 108: 9172–9177.

    Article  CAS  Google Scholar 

  9. Palanisamy N, Ateeq B, Kalyana-Sundaram S, Pflueger D, Ramnarayanan K, Shankar S et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat Med 2010; 16: 793–798.

    Article  CAS  Google Scholar 

  10. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.

    Article  Google Scholar 

  11. Jung KW, Won YJ, Kong HJ, Oh CM, Seo HG, Lee JS . Prediction of cancer incidence and mortality in Korea, 2013. Cancer Res Treatment 2013; 45: 15–21.

    Article  Google Scholar 

  12. Tao J, Deng NT, Ramnarayanan K, Huang B, Oh HK, Leong SH et al. CD44-SLC1A2 gene fusions in gastric cancer. Sci Transl Med 2011; 3: 77ra30.

    Article  Google Scholar 

  13. Zhang Y, Gong M, Yuan H, Park HG, Frierson HF, Li H . Chimeric transcript generated by cis-splicing of adjacent genes regulates prostate cancer cell proliferation. Cancer Discov 2012; 2: 598–607.

    Article  CAS  Google Scholar 

  14. Sboner A, Habegger L, Pflueger D, Terry S, Chen DZ, Rozowsky JS et al. FusionSeq: a modular framework for finding gene fusions by analyzing paired-end RNA-sequencing data. Genome Biol 2010; 11: R104.

    Article  CAS  Google Scholar 

  15. Berger MF, Levin JZ, Vijayendran K, Sivachenko A, Adiconis X, Maguire J et al. Integrative analysis of the melanoma transcriptome. Genome Res 2010; 20: 413–427.

    Article  CAS  Google Scholar 

  16. Sigrist CJ, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A et al. New and continuing developments at PROSITE. Nucleic Acids Res 2013; 41: D344–D347.

    Article  CAS  Google Scholar 

  17. Letunic I, Doerks T, Bork P . SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 2012; 40: D302–D305.

    Article  CAS  Google Scholar 

  18. Zang ZJ, Ong CK, Cutcutache I, Yu W, Zhang SL, Huang D et al. Genetic and structural variation in the gastric cancer kinome revealed through targeted deep sequencing. Cancer Res 2011; 71: 29–39.

    Article  CAS  Google Scholar 

  19. Nagoshi H, Taki T, Hanamura I, Nitta M, Otsuki T, Nishida K et al. Frequent PVT1 rearrangement and novel chimeric genes PVT1-NBEA and PVT1-WWOX occur in multiple myeloma with 8q24 abnormality. Cancer Res 2012; 72: 4954–4962.

    Article  CAS  Google Scholar 

  20. Ku JL, Park JG . Biology of SNU cell lines. Cancer Res Treatment 2005; 37: 1–19.

    Article  Google Scholar 

  21. Li H, Wang J, Mor G, Sklar J . A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science 2008; 321: 1357–1361.

    Article  CAS  Google Scholar 

  22. Li H, Wang J, Ma X, Sklar J . Gene fusions and RNA trans-splicing in normal and neoplastic human cells. Cell Cycle 2009; 8: 218–222.

    Article  CAS  Google Scholar 

  23. Underiner TL, Herbertz T, Miknyoczki SJ . Discovery of small molecule c-Met inhibitors: Evolution and profiles of clinical candidates. Anticancer Agents Med Chem 2010; 10: 7–27.

    Article  CAS  Google Scholar 

  24. Malumbres M, Pevarello P, Barbacid M, Bischoff JR . CDK inhibitors in cancer therapy: what is next? Trends Pharmacol Sci 2008; 29: 16–21.

    Article  CAS  Google Scholar 

  25. Peters S, Adjei AA . MET: a promising anticancer therapeutic target. Nat Rev Clin Oncol 2012; 9: 314–326.

    Article  CAS  Google Scholar 

  26. Smolen GA, Sordella R, Muir B, Mohapatra G, Barmettler A, Archibald H et al. Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proc Natl Acad Sci USA 2006; 103: 2316–2321.

    Article  CAS  Google Scholar 

  27. Fushida S, Yonemura Y, Urano T, Yamaguchi A, Miyazaki I, Nakamura T et al. Expression of hepatocyte growth factor(hgf) and C-met gene in human gastric-cancer cell-lines. Int J Oncol 1993; 3: 1067–1070.

    CAS  PubMed  Google Scholar 

  28. Katoh Y, Katoh M . FGFR2-related pathogenesis and FGFR2-targeted therapeutics (Review). Int J Mol Med 2009; 23: 307–311.

    CAS  PubMed  Google Scholar 

  29. Gozgit JM, Wong MJ, Moran L, Wardwell S, Mohemmad QK, Narasimhan NI et al. Ponatinib (AP24534), a multitargeted pan-FGFR inhibitor with activity in multiple FGFR-amplified or mutated cancer models. Mol Cancer Ther 2012; 11: 690–699.

    Article  CAS  Google Scholar 

  30. Huppi K, Volfovsky N, Runfola T, Jones TL, Mackiewicz M, Martin SE et al. The identification of microRNAs in a genomically unstable region of human chromosome 8q24. Mol Cancer Res 2008; 6: 212–221.

    Article  CAS  Google Scholar 

  31. Kawamata N, Zhang L, Ogawa S, Nannya Y, Dashti A, Lu D et al. Double minute chromosomes containing MYB gene and NUP214-ABL1 fusion gene in T-cell leukemia detected by single nucleotide polymorphism DNA microarray and fluorescence in situ hybridization. Leuk Res 2009; 33: 569–571.

    Article  CAS  Google Scholar 

  32. Forment JV, Kaidi A, Jackson SP . Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer 2012; 12: 663–670.

    Article  CAS  Google Scholar 

  33. Wu TD, Nacu S . Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 2010; 26: 873–881.

    Article  CAS  Google Scholar 

  34. Ju YS, Lee WC, Shin JY, Lee S, Bleazard T, Won JK et al. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res 2012; 22: 436–445.

    Article  CAS  Google Scholar 

  35. Seo JS, Ju YS, Lee WC, Shin JY, Lee JK, Bleazard T et al. The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res 2012; 22: 2109–2119.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially funded by the Korean Healthcare 21 and Technology R&D project, Ministry for Health, Welfare & Family Affairs, Republic of Korea (Grant No. A091081), and by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, Republic of Korea (2009-0093820).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T-Y Kim.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HP., Cho, GA., Han, SW. et al. Novel fusion transcripts in human gastric cancer revealed by transcriptome analysis. Oncogene 33, 5434–5441 (2014). https://doi.org/10.1038/onc.2013.490

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.490

Keywords

This article is cited by

Search

Quick links