Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Foxm1 transcription factor is required for the initiation of lung tumorigenesis by oncogenic KrasG12D

Abstract

Lung cancer is the leading cause of deaths in cancer patients in the United States. Identification of new molecular targets is clearly needed to improve therapeutic outcomes of this devastating human disease. Activating mutations in K-Ras oncogene and increased expression of FOXM1 protein are associated with poor prognosis in patients with non-small-cell lung cancer. Transgenic expression of activated KrasG12D in mouse respiratory epithelium is sufficient to induce lung adenocarcinomas; however, transcriptional mechanisms regulated by K-Ras during the initiation of lung cancer remain poorly understood. Foxm1 transcription factor, a downstream target of K-Ras, stimulates cellular proliferation during embryogenesis, organ repair and tumor growth, but its role in tumor initiation is unknown. In the present study, we used transgenic mice expressing KrasG12D under control of Sftpc promoter to demonstrate that Foxm1 was induced in type II epithelial cells before the formation of lung tumors. Conditional deletion of Foxm1 from KrasG12D-expressing respiratory epithelium prevented the initiation of lung tumors in vivo. The loss of Foxm1 inhibited expression of K-Ras target genes critical for the nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) pathways, including Ikbkb, Nfkb1, Nfkb2, Rela, Jnk1, N-Myc, Pttg1 and Cdkn2a. Transgenic overexpression of activated FOXM1 mutant was sufficient to induce expression of these genes in alveolar type II cells. FOXM1 directly bound to promoter regions of Ikbkb, Nfkb2, N-Myc, Pttg1 and Cdkn2a, indicating that these genes are direct FOXM1 targets. FOXM1 is required for K-Ras-mediated lung tumorigenesis by activating genes critical for the NF-κB and JNK pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

Cre:

Cre recombinase

Dox:

doxycycline

Fox:

Forkhead Box transcription factor

NF-κB:

nuclear factor-κB

NSCLC:

non-small-cell lung cancer.

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P . Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74–108.

    Article  Google Scholar 

  2. Alberg AJ, Samet JM . Epidemiology of lung cancer. Chest 2003; 123: 21S–49S.

    Article  Google Scholar 

  3. Kim IM, Ackerson T, Ramakrishna S, Tretiakova M, Wang IC, Kalin TV et al. The forkhead box m1 transcription factor stimulates the proliferation of tumor cells during development of lung cancer. Cancer Res 2006; 66: 2153–2161.

    Article  CAS  Google Scholar 

  4. Costa RH, Kalinichenko VV, Major ML, Raychaudhuri P . New and unexpected: forkhead meets ARF. Curr Opin Genet Dev 2005; 15: 42–48.

    Article  CAS  Google Scholar 

  5. Kalin TV, Ustiyan V, Kalinichenko VV . Multiple faces of FoxM1 transcription factor: lessons from transgenic mouse models. Cell cycle (Georgetown, Tex) 2011; 10: 396–405.

    Article  CAS  Google Scholar 

  6. Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z . A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 2006; 38: 1043–1048.

    Article  CAS  Google Scholar 

  7. Wang IC, Meliton L, Tretiakova M, Costa RH, Kalinichenko VV, Kalin TV . Transgenic expression of the forkhead box M1 transcription factor induces formation of lung tumors. Oncogene 2008; 27: 4137–4149.

    Article  CAS  Google Scholar 

  8. Wang IC, Meliton L, Ren X, Zhang Y, Balli D, Snyder J et al. Deletion of Forkhead Box M1 transcription factor from respiratory epithelial cells inhibits pulmonary tumorigenesis. PLoS One 2009; 4: e6609.

    Article  Google Scholar 

  9. Fisher GH, Wellen SL, Klimstra D, Lenczowski JM, Tichelaar JW, Lizak MJ et al. Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev 2001; 15: 3249–3262.

    Article  CAS  Google Scholar 

  10. Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 2001; 15: 3243–3248.

    Article  CAS  Google Scholar 

  11. Johnson L, Mercer K, Greenbaum D, Bronson RT, Crowley D, Tuveson DA et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 2001; 410: 1111–1116.

    Article  CAS  Google Scholar 

  12. Major ML, Lepe R, Costa RH . Forkhead Box M1B (FoxM1B) transcriptional activity requires binding of Cdk/Cyclin complexes for phosphorylation-dependent recruitment of p300/cbp co-activators. Mol Cell Biol 2004; 24: 2649–2661.

    Article  CAS  Google Scholar 

  13. Ma RY, Tong TH, Cheung AM, Tsang AC, Leung WY, Yao KM . Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c. J Cell Sci 2005; 118: 795–806.

    Article  CAS  Google Scholar 

  14. Wang IC, Snyder J, Zhang Y, Lander J, Nakafuku Y, Lin J et al. Foxm1 mediates cross talk between Kras/mitogen-activated protein kinase and canonical Wnt pathways during development of respiratory epithelium. Mol Cell Biol 2012; 32: 3838–3850.

    Article  CAS  Google Scholar 

  15. Behren A, Muhlen S, Acuna Sanhueza GA, Schwager C, Plinkert PK, Huber PE et al. Phenotype-assisted transcriptome analysis identifies FOXM1 downstream from Ras-MKK3-p38 to regulate in vitro cellular invasion. Oncogene 2010; 29: 1519–1530.

    Article  CAS  Google Scholar 

  16. Kalin TV, Wang IC, Meliton L, Zhang Y, Wert SE, Ren X et al. Forkhead Box m1 transcription factor is required for perinatal lung function. Proc Natl Acad Sci USA 2008; 105: 19330–19335.

    Article  CAS  Google Scholar 

  17. Sweet-Cordero A, Mukherjee S, Subramanian A, You H, Roix JJ, Ladd-Acosta C et al. An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nat Genet 2005; 37: 48–55.

    Article  CAS  Google Scholar 

  18. Watters JW, Roberts CJ . Developing gene expression signatures of pathway deregulation in tumors. Mol Cancer Ther 2006; 5: 2444–2449.

    Article  CAS  Google Scholar 

  19. Acosta JC, O'Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 2008; 133: 1006–1018.

    Article  CAS  Google Scholar 

  20. Ahn YH, Yang Y, Gibbons DL, Creighton CJ, Yang F, Wistuba II et al. Map2k4 functions as a tumor suppressor in lung adenocarcinoma and inhibits tumor cell invasion by decreasing peroxisome proliferator-activated receptor gamma2 expression. Mol Cell Biol 2011; 31: 4270–4285.

    Article  CAS  Google Scholar 

  21. Magudia K, Lahoz A, Hall A . K-Ras and B-Raf oncogenes inhibit colon epithelial polarity establishment through up-regulation of c-myc. J Cell Biol 2012; 198: 185–194.

    Article  CAS  Google Scholar 

  22. Shin S, Dimitri CA, Yoon SO, Dowdle W, Blenis J . ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Mol Cell 2010; 38: 114–127.

    Article  CAS  Google Scholar 

  23. Whitsett JA, Glasser SW . Regulation of surfactant protein gene transcription. Biochim Biophys Acta 1998; 19: 2–3.

    Google Scholar 

  24. Iwao K, Watanabe T, Fujiwara Y, Takami K, Kodama K, Higashiyama M et al. Isolation of a novel human lung-specific gene, LUNX, a potential molecular marker for detection of micrometastasis in non-small-cell lung cancer. Int J Cancer 2001; 91: 433–437.

    Article  CAS  Google Scholar 

  25. Koishi R, Ando Y, Ono M, Shimamura M, Yasumo H, Fujiwara T et al. Angptl3 regulates lipid metabolism in mice. Nat Genet 2002; 30: 151–157.

    Article  CAS  Google Scholar 

  26. Kwei KA, Kim YH, Girard L, Kao J, Pacyna-Gengelbach M, Salari K et al. Genomic profiling identifies TITF1 as a lineage-specific oncogene amplified in lung cancer. Oncogene 2008; 27: 3635–3640.

    Article  CAS  Google Scholar 

  27. Whitsett JA, Wert SE, Weaver TE . Alveolar surfactant homeostasis and the pathogenesis of pulmonary disease. Ann Rev Med 2010; 61: 105–119.

    Article  CAS  Google Scholar 

  28. Ihara Y, Kihara Y, Hamano F, Yanagida K, Morishita Y, Kunita A et al. The G protein-coupled receptor T-cell death-associated gene 8 (TDAG8) facilitates tumor development by serving as an extracellular pH sensor. Proc Natl Acad Sci USA 2010; 107: 17309–17314.

    Article  CAS  Google Scholar 

  29. Zhou Y, Rideout WM III, Zi T, Bressel A, Reddypalli S, Rancourt R et al. Chimeric mouse tumor models reveal differences in pathway activation between ERBB family- and KRAS-dependent lung adenocarcinomas. Nat Biotechnol 2010; 28: 71–78.

    Article  CAS  Google Scholar 

  30. Cellurale C, Sabio G, Kennedy NJ, Das M, Barlow M, Sandy P et al. Requirement of c-Jun NH(2)-terminal kinase for Ras-initiated tumor formation. Mol Cell Biol 2011; 31: 1565–1576.

    Article  CAS  Google Scholar 

  31. Wang IC, Chen YJ, Hughes DE, Ackerson T, Major ML, Kalinichenko VV et al. FOXM1 regulates transcription of JNK1 to promote the G1/S transition and tumor cell invasiveness. J Biol Chem 2008; 283: 20770–20778.

    Article  CAS  Google Scholar 

  32. Meylan E, Dooley AL, Feldser DM, Shen L, Turk E, Ouyang C et al. Requirement for NF-kappaB signalling in a mouse model of lung adenocarcinoma. Nature 2009; 462: 104–107.

    Article  CAS  Google Scholar 

  33. Wang IC, Zhang Y, Snyder J, Sutherland MJ, Burhans MS, Shannon JM et al. Increased expression of FoxM1 transcription factor in respiratory epithelium inhibits lung sacculation and causes Clara cell hyperplasia. Dev Biol 2010; 347: 301–314.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ron Pratt for technical support with microCT imaging and Craig Bolte for helpful comments. This work was supported by NIH grants HL84151 (VVK) and CA142724 (TVK), the Career Development Award from National Lung Cancer Partnership (I-CW), research grants from National Science Council of Taiwan 102B0023V8 (I-CW) and Toward World-Class University Project of National Tsing Hua University 102N2052E1 (I-CW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V V Kalinichenko.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, IC., Ustiyan, V., Zhang, Y. et al. Foxm1 transcription factor is required for the initiation of lung tumorigenesis by oncogenic KrasG12D. Oncogene 33, 5391–5396 (2014). https://doi.org/10.1038/onc.2013.475

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.475

Keywords

This article is cited by

Search

Quick links