Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Synergistic function of Kras mutation and HBx in initiation and progression of hepatocellular carcinoma in mice

Abstract

Although the activation of Ras pathway is frequently observed in human hepatocellular carcinoma (HCC), the in vivo role of Ras activation in HCC initiation and progression is underdetermined. To test the consequence of Kras activation in hepatocyte, we generated a hepatocyte-specific KrasG12D transgenic mouse strain and observed spontaneous development of HCC in these mice. Remarkably, HBV X protein (HBx) expression significantly promotes the formation and malignant progression of KrasG12D-driven HCC as shown with the accelerated tumor onset, the increased tumor burden and the more poorly differentiated lesions. At the cellular level, concomitant expression of KrasG12D and HBx results in a robust increase in hepatocellular proliferation. We reveal that the Akt, MAPK, p53 and TGF-β pathways are deregulated in the KrasG12D-driven HCCs. Also, the dysregulation is more pronounced in the HCCs developed in KrasG12D and HBx double transgenic mice. In addition, the altered expressions of β-catenin, CD44 and E-cadherin are only observed in the KrasG12D and HBx double transgenic mice. These results demonstrate a crucial role of Ras activation in hepatocellular carcinogenesis and the functional synergy between KrasG12D and HBx in HCC initiation and progression. The novel genetic mouse models that closely recapitulate the histopathologic progression and molecular alterations of human HCC may potentially facilitate the future therapeutic studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.

    Article  Google Scholar 

  2. Arzumanyan A, Reis HM, Feitelson MA . Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer 2012; 13: 123–135.

    Article  Google Scholar 

  3. Farazi PA, DePinho RA . Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 2006; 6: 674–687.

    Article  CAS  Google Scholar 

  4. Morris SM, Baek JY, Koszarek A, Kanngurn S, Knoblaugh SE, Grady WM . Transforming growth factor-beta signaling promotes hepatocarcinogenesis induced by p53 loss. Hepatology 2012; 55: 121–131.

    Article  CAS  Google Scholar 

  5. Terradillos O, Billet O, Renard CA, Levy R, Molina T, Briand P et al. The hepatitis B virus X gene potentiates c-myc-induced liver oncogenesis in transgenic mice. Oncogene 1997; 14: 395–404.

    Article  CAS  Google Scholar 

  6. Colnot S, Decaens T, Niwa-Kawakita M, Godard C, Hamard G, Kahn A et al. Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas. Proc Natl Acad Sci USA 2004; 101: 17216–17221.

    Article  CAS  Google Scholar 

  7. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D . Ras oncogenes: weaving a tumorigenic web. Nat Rev Cancer 2011; 11: 761–774.

    Article  CAS  Google Scholar 

  8. Karnoub AE, Weinberg RA . RAS oncogenes: split personalities. Nat Rev Mol Cell Biol 2008; 9: 517–531.

    Article  CAS  Google Scholar 

  9. Calvisi DF, Ladu S, Gorden A, Farina M, Conner EA, Lee JS et al. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 2006; 130: 1117–1128.

    Article  CAS  Google Scholar 

  10. Fan R, Chen P, Zhao D, Tong JL, Li J, Liu F . Cooperation of deregulated Notch signaling and Ras pathway in human hepatocarcinogenesis. J Mol Histol 2011; 42: 473–481.

    Article  CAS  Google Scholar 

  11. Keng VW, Tschida BR, Bell JB, Largaespada DA . Modeling hepatitis B virus X-induced hepatocellular carcinoma in mice with the Sleeping Beauty transposon system. Hepatology 2011; 53: 781–790.

    Article  CAS  Google Scholar 

  12. Harada N, Oshima H, Katoh M, Tamai Y, Oshima M, Taketo MM . Hepatocarcinogenesis in mice with beta-catenin and Ha-ras gene mutations. Cancer Res 2004; 64: 48–54.

    Article  CAS  Google Scholar 

  13. O'Dell MR, Huang JL, Whitney-Miller CL, Deshpande V, Rothberg P, Grose V et al. Kras(G12D) and p53 mutation cause primary intrahepatic cholangiocarcinoma. Cancer Res 2012; 72: 1557–1567.

    Article  CAS  Google Scholar 

  14. Tuveson DA, Zhu L, Gopinathan A, Willis NA, Kachatrian L, Grochow R et al. Mist1-KrasG12D knock-in mice develop mixed differentiation metastatic exocrine pancreatic carcinoma and hepatocellular carcinoma. Cancer Res 2006; 66: 242–247.

    Article  CAS  Google Scholar 

  15. El-Serag HB . Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 2012; 142: 1264–1273 e1261.

    Article  Google Scholar 

  16. Li Y, Tang ZY, Hou JX . Hepatocellular carcinoma: insight from animal models. Nat Rev Gastroenterol Hepatol 2012; 9: 32–43.

    Article  Google Scholar 

  17. Tang H, Oishi N, Kaneko S, Murakami S . Molecular functions and biological roles of hepatitis B virus x protein. Cancer Sci 2006; 97: 977–983.

    Article  CAS  Google Scholar 

  18. Bock CT, Toan NL, Koeberlein B, Song le H, Chin R, Zentgraf H et al. Subcellular mislocalization of mutant hepatitis B X proteins contributes to modulation of STAT/SOCS signaling in hepatocellular carcinoma. Intervirology 2008; 51: 432–443.

    Article  CAS  Google Scholar 

  19. Cha MY, Kim CM, Park YM, Ryu WS . Hepatitis B virus X protein is essential for the activation of Wnt/beta-catenin signaling in hepatoma cells. Hepatology 2004; 39: 1683–1693.

    Article  CAS  Google Scholar 

  20. Zhang X, Zhang H, Ye L . Effects of hepatitis B virus X protein on the development of liver cancer. J Lab Clin Med 2006; 147: 58–66.

    Article  CAS  Google Scholar 

  21. Wang Y, Cui F, Lv Y, Li C, Xu X, Deng C et al. HBsAg and HBx knocked into the p21 locus causes hepatocellular carcinoma in mice. Hepatology 2004; 39: 318–324.

    Article  CAS  Google Scholar 

  22. Cui F, Wang Y, Wang J, Wei K, Hu J, Liu F et al. The up-regulation of proteasome subunits and lysosomal proteases in hepatocellular carcinomas of the HBx gene knockin transgenic mice. Proteomics 2006; 6: 498–504.

    Article  CAS  Google Scholar 

  23. Sun Q, Wang Y, Zhang Y, Liu F, Cheng X, Hou N et al. Expression profiling reveals dysregulation of cellular cytoskeletal genes in HBx-induced hepatocarcinogenesis. Cancer Biol Ther 2007; 6: 668–674.

    Article  CAS  Google Scholar 

  24. Sun Q, Zhang Y, Liu F, Zhao X, Yang X . Identification of candidate biomarkers for hepatocellular carcinoma through pre-cancerous expression analysis in an HBx transgenic mouse. Cancer Biol Ther 2007; 6: 1532–1538.

    Article  CAS  Google Scholar 

  25. Longato L, de la Monte S, Kuzushita N, Horimoto M, Rogers AB, Slagle BL et al. Overexpression of insulin receptor substrate-1 and hepatitis Bx genes causes premalignant alterations in the liver. Hepatology 2009; 49: 1935–1943.

    Article  CAS  Google Scholar 

  26. Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 2001; 15: 3243–3248.

    Article  CAS  Google Scholar 

  27. Postic C, Shiota M, Niswender KD, Jetton TL, Chen Y, Moates JM et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J Biol Chem 1999; 274: 305–315.

    Article  CAS  Google Scholar 

  28. Kim YC, Song KS, Yoon G, Nam MJ, Ryu WS . Activated ras oncogene collaborates with HBx gene of hepatitis B virus to transform cells by suppressing HBx-mediated apoptosis. Oncogene 2001; 20: 16–23.

    Article  CAS  Google Scholar 

  29. Oishi N, Shilagardi K, Nakamoto Y, Honda M, Kaneko S, Murakami S . Hepatitis B virus X protein overcomes oncogenic RAS-induced senescence in human immortalized cells. Cancer Sci 2007; 98: 1540–1548.

    Article  CAS  Google Scholar 

  30. Schmitz KJ, Wohlschlaeger J, Lang H, Sotiropoulos GC, Malago M, Steveling K et al. Activation of the ERK and AKT signalling pathway predicts poor prognosis in hepatocellular carcinoma and ERK activation in cancer tissue is associated with hepatitis C virus infection. J Hepatol 2008; 48: 83–90.

    Article  CAS  Google Scholar 

  31. Wang SN, Lee KT, Tsai CJ, Chen YJ, Yeh YT . Phosphorylated p38 and JNK MAPK proteins in hepatocellular carcinoma. Eur J Clin Invest 2012; 42: 1295–1301.

    Article  CAS  Google Scholar 

  32. Yang SF, Wang SN, Wu CF, Yeh YT, Chai CY, Chunag SC et al. Altered p-STAT3 (tyr705) expression is associated with histological grading and intratumour microvessel density in hepatocellular carcinoma. J Clin Pathol 2007; 60: 642–648.

    Article  CAS  Google Scholar 

  33. Benn J, Schneider RJ . Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade. Proc Natl Acad Sci USA 1994; 91: 10350–10354.

    Article  CAS  Google Scholar 

  34. Lee YI, Kang-Park S, Do SI . The hepatitis B virus-X protein activates a phosphatidylinositol 3-kinase-dependent survival signaling cascade. J Biol Chem 2001; 276: 16969–16977.

    Article  CAS  Google Scholar 

  35. Xia L, Tian D, Huang W, Zhu H, Wang J, Zhang Y et al. Upregulation of IL-23 expression in patients with chronic hepatitis B is mediated by the HBx/ERK/NF-kappaB pathway. J Immunol 2012; 188: 753–764.

    Article  CAS  Google Scholar 

  36. Tarn C, Zou L, Hullinger RL, Andrisani OM . Hepatitis B virus X protein activates the p38 mitogen-activated protein kinase pathway in dedifferentiated hepatocytes. J Virol 2002; 76: 9763–9772.

    Article  CAS  Google Scholar 

  37. Lee SG, Rho HM . Transcriptional repression of the human p53 gene by hepatitis B viral X protein. Oncogene 2000; 19: 468–471.

    Article  CAS  Google Scholar 

  38. Nishida N, Fukuda Y, Ishizaki K . Molecular aspects of hepatocarcinogenesis and their clinical implications - review. Int J Oncol 1994; 4: 615–622.

    CAS  PubMed  Google Scholar 

  39. Hsieh A, Kim HS, Lim SO, Yu DY, Jung G . Hepatitis B viral X protein interacts with tumor suppressor adenomatous polyposis coli to activate Wnt/beta-catenin signaling. Cancer Lett 2011; 300: 162–172.

    Article  CAS  Google Scholar 

  40. Lara-Pezzi E, Serrador JM, Montoya MC, Zamora D, Yanez-Mo M, Carretero M et al. The hepatitis B virus X protein (HBx) induces a migratory phenotype in a CD44-dependent manner: possible role of HBx in invasion and metastasis. Hepatology 2001; 33: 1270–1281.

    Article  CAS  Google Scholar 

  41. Kim HR, Lee SH, Jung G . The hepatitis B viral X protein activates NF-kappaB signaling pathway through the up-regulation of TBK1. FEBS Lett 2010; 584: 525–530.

    Article  CAS  Google Scholar 

  42. Liu J, Lian Z, Han S, Waye MM, Wang H, Wu MC et al. Downregulation of E-cadherin by hepatitis B virus X antigen in hepatocellullar carcinoma. Oncogene 2006; 25: 1008–1017.

    Article  CAS  Google Scholar 

  43. Chappell WH, Steelman LS, Long JM, Kempf RC, Abrams SL, Franklin RA et al. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget 2011; 2: 135–164.

    Article  Google Scholar 

  44. Macnee W, Allan RJ, Jones I, De Salvo MC, Tan LF . Efficacy and safety of the oral p38 inhibitor PH-797804 in chronic obstructive pulmonary disease: a randomised clinical trial. Thorax 2013; 68: 738–745.

    Article  Google Scholar 

  45. Miyoshi K, Takaishi M, Nakajima K, Ikeda M, Kanda T, Tarutani M et al. Stat3 as a therapeutic target for the treatment of psoriasis: a clinical feasibility study with STA-21, a Stat3 inhibitor. J Invest Dermatol 2011; 131: 108–117.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (81272702; 31171249; 31071295; 81123001), Chinese National Key Program on Basic Research (2011CB504202; 2012CB945103; 2011CB910601) and National High Technology Research and Development program of China (2012AA022402). We thank Xiao-Yan Chang for histopathologic analysis, You-Liang Wang, Xiu-Bin Li, Xiao-Jie Xu, Qi-Long Ye and Xin Chen for technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y Teng or X Yang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, H., Zhang, C., Wang, BJ. et al. Synergistic function of Kras mutation and HBx in initiation and progression of hepatocellular carcinoma in mice. Oncogene 33, 5133–5138 (2014). https://doi.org/10.1038/onc.2013.468

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.468

Keywords

This article is cited by

Search

Quick links