Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

p73 regulates serine biosynthesis in cancer

Abstract

Activation of serine biosynthesis supports growth and proliferation of cancer cells. Human cancers often exhibit overexpression of phosphoglycerate dehydrogenase (PHGDH), the metabolic enzyme that catalyses the reaction that diverts serine biosynthesis from the glycolytic pathway. By refueling serine biosynthetic pathways, cancer cells sustain their metabolic requirements, promoting macromolecule synthesis, anaplerotic flux and ATP. Serine biosynthesis intersects glutaminolysis and together with this pathway provides substrates for production of antioxidant GSH. In human lung adenocarcinomas we identified a correlation between serine biosynthetic pathway and p73 expression. Metabolic profiling of human cancer cell line revealed that TAp73 activates serine biosynthesis, resulting in increased intracellular levels of serine and glycine, associated to accumulation of glutamate, tricarboxylic acid (TCA) anaplerotic intermediates and GSH. However, at molecular level p73 does not directly regulate serine metabolic enzymes, but transcriptionally controls a key enzyme of glutaminolysis, glutaminase-2 (GLS-2). p73, through GLS-2, favors conversion of glutamine in glutamate, which in turn drives the serine biosynthetic pathway. Serine and glutamate can be then employed for GSH synthesis, thus the p73-dependent metabolic switch enables potential response against oxidative stress. In knockdown experiment, indeed, TAp73 depletion completely abrogates cancer cell proliferation capacity in serine/glycine-deprivation, supporting the role of p73 to help cancer cells under metabolic stress. These findings implicate p73 in regulation of cancer metabolism and suggest that TAp73 influences glutamine and serine metabolism, affecting GSH synthesis and determining cancer pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

GLS-2:

Glutaminase 2

NSCLC:

non-small-cell lung carcinoma

PHGDH:

Phosphoglycerate dehydrogenase

PKM2:

M2 isoform of pyruvate kinase

PSAT-1:

phospho-serine aminotransferase 1

PSPH:

phospho-serine phosphatase

SGBS:

serine/glycine biosynthesis

TCA:

tricarboxylic acids.

References

  1. Tennant DA, Duran RV, Gottlieb E . Targeting metabolic transformation for cancer therapy. Nature reviews Cancer 2010; 10: 267–277.

    Article  CAS  Google Scholar 

  2. Lunt SY, Vander Heiden MG . Aerobic glycolysis: meeting the metabolic requirements of cell proliferation.  Annu Rev Cell Dev Biol 2011; 27: 441–464.

    Article  CAS  Google Scholar 

  3. Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 2011; 476: 346–350.

    Article  CAS  Google Scholar 

  4. Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR, Bass AJ et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat genet 2011; 43: 869–874.

    Article  CAS  Google Scholar 

  5. Nomura DK, Long JZ, Niessen S, Hoover HS, Ng SW, Cravatt BF . Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 2010; 140: 49–61.

    Article  CAS  Google Scholar 

  6. Pollari S, Kakonen SM, Edgren H, Wolf M, Kohonen P, Sara H et al. Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast cancer res treat 2011; 125: 421–430.

    Article  CAS  Google Scholar 

  7. Chaneton B, Hillmann P, Zheng L, Martin AC, Maddocks OD, Chokkathukalam A et al. Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 2013; 491: 458–462.

    Article  Google Scholar 

  8. Ye J, Mancuso A, Tong X, Ward PS, Fan J, Rabinowitz JD et al. Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proc Natl Acad SciUSA 2012; 109: 6904–6909.

    Article  CAS  Google Scholar 

  9. Ashizawa K, Willingham MC, Liang CM, Cheng SY . In vivo regulation of monomer-tetramer conversion of pyruvate kinase subtype M2 by glucose is mediated via fructose 1,6-bisphosphate. J Biol Chem 1991; 266: 16842–16846.

    CAS  PubMed  Google Scholar 

  10. Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC . Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 2008; 452: 181–186.

    Article  CAS  Google Scholar 

  11. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008; 452: 230–233.

    Article  CAS  Google Scholar 

  12. Seo J, Fortuno ES 3rd, Suh JM, Stenesen D, Tang W, Parks EJ et al. Atf4 regulates obesity, glucose homeostasis, and energy expenditure. Diabetes 2009; 58: 2565–2573.

    Article  CAS  Google Scholar 

  13. Adams CM . Role of the transcription factor ATF4 in the anabolic actions of insulin and the anti-anabolic actions of glucocorticoids. J Biol Chem 2007; 282: 16744–16753.

    Article  CAS  Google Scholar 

  14. Soria C, Estermann FE, Espantman KC, O'Shea CC . Heterochromatin silencing of p53 target genes by a small viral protein. Nature 2010; 466: 1076–1081.

    Article  CAS  Google Scholar 

  15. Brady CA, Jiang D, Mello SS, Johnson TM, Jarvis LA, Kozak MM et al. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 2011; 145: 571–583.

    Article  CAS  Google Scholar 

  16. Leonova KI, Brodsky L, Lipchick B, Pal M, Novototskaya L, Chenchik AA et al. p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs. Proc Natl Acad Sci USA 2013; 110: E89–E98.

    Article  CAS  Google Scholar 

  17. Kibe R, Zhang S, Guo D, Marrero L, Tsien F, Rodriguez P et al. IL-7Ralpha deficiency in p53null mice exacerbates thymocyte telomere erosion and lymphomagenesis. Cell Death Differ 2012; 19: 1139–1151.

    Article  CAS  Google Scholar 

  18. Boren J, Brindle KM . Apoptosis-induced mitochondrial dysfunction causes cytoplasmic lipid droplet formation. Cell Death Differ 2012; 19: 1561–1570.

    Article  CAS  Google Scholar 

  19. Freed-Pastor WA, Mizuno H, Zhao X, Langerod A, Moon SH, Rodriguez-Barrueco R et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 2012; 148: 244–258.

    Article  CAS  Google Scholar 

  20. Maddocks OD, Berkers CR, Mason SM, Zheng L, Blyth K, Gottlieb E et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 2013; 493: 542–546.

    Article  CAS  Google Scholar 

  21. Donzelli S, Fontemaggi G, Fazi F, Di Agostino S, Padula F, Biagioni F et al. MicroRNA-128-2 targets the transcriptional repressor E2F5 enhancing mutant p53 gain of function. Cell Death Differ 2012; 19: 1038–1048.

    Article  CAS  Google Scholar 

  22. Chang JY, Chiang MF, Lin SR, Lee MH, He H, Chou PY et al. TIAF1 self-aggregation in peritumor capsule formation, spontaneous activation of SMAD-responsive promoter in p53-deficient environment, and cell death. Cell Death Dis 2012; 3: e302.

    Article  Google Scholar 

  23. Huang BH, Zhuo JL, Leung CH, Lu GD, Liu JJ, Yap CT et al. PRAP1 is a novel executor of p53-dependent mechanisms in cell survival after DNA damage. Cell Death Dis 2012; 3: e442.

    Article  CAS  Google Scholar 

  24. Cho JH, Kim MJ, Kim KJ, Kim JR . POZ/BTB and AT-hook-containing zinc finger protein 1 (PATZ1) inhibits endothelial cell senescence through a p53 dependent pathway. Cell Death Differ 2012; 19: 703–712.

    Article  CAS  Google Scholar 

  25. Astle MV, Hannan KM, Ng PY, Lee RS, George AJ, Hsu AK et al. AKT induces senescence in human cells via mTORC1 and p53 in the absence of DNA damage: implications for targeting mTOR during malignancy. Oncogene 2012; 31: 1949–1962.

    Article  CAS  Google Scholar 

  26. Masse I, Barbollat-Boutrand L, Molina M, Berthier-Vergnes O, Joly-Tonetti N, Martin MT et al. Functional interplay between p63 and p53 controls RUNX1 function in the transition from proliferation to differentiation in human keratinocytes. Cell death & disease 2012; 3: e318.

    Article  CAS  Google Scholar 

  27. Levine AJ, Tomasini R, McKeon FD, Mak TW, Melino G . The p53 family: guardians of maternal reproduction. Nat Rev Mol Cell Biol 2011; 12: 259–265.

    Article  CAS  Google Scholar 

  28. Rufini A, Agostini M, Grespi F, Tomasini R, Sayan BS, Niklison-Chirou MV et al. p73 in Cancer. Genes & cancer 2011; 2: 491–502.

    Article  CAS  Google Scholar 

  29. Yang A, Walker N, Bronson R, Kaghad M, Oosterwegel M, Bonnin J et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 2000; 404: 99–103.

    Article  CAS  Google Scholar 

  30. Al-Bahlani S, Fraser M, Wong AY, Sayan BS, Bergeron R, Melino G et al. P73 regulates cisplatin-induced apoptosis in ovarian cancer cells via a calcium/calpain-dependent mechanism. Oncogene 2011; 30: 4219–4230.

    Article  CAS  Google Scholar 

  31. Melino G, De Laurenzi V, Vousden KH . p73: Friend or foe in tumorigenesis. Nature reviews Cancer 2002; 2: 605–615.

    Article  CAS  Google Scholar 

  32. Conforti F, Sayan AE, Sreekumar R, Sayan BS . Regulation of p73 activity by post-translational modifications. Cell death & disease 2012; 3: e285.

    Article  CAS  Google Scholar 

  33. Malatesta M, Peschiaroli A, Memmi EM, Zhang J, Antonov A, Green DR et al. The Cul4A-DDB1 E3 ubiquitin ligase complex represses p73 transcriptional activity. Oncogene 2013; 32: 4721–4726.

    Article  CAS  Google Scholar 

  34. Sayan BS, Yang AL, Conforti F, Tucci P, Piro MC, Browne GJ et al. Differential control of TAp73 and DeltaNp73 protein stability by the ring finger ubiquitin ligase PIR2. Proc Natl Acad SciUSA 2010; 107: 12877–12882.

    Article  CAS  Google Scholar 

  35. Conforti F, Li Yang A, Cristina Piro M, Mellone M, Terrinoni A, Candi E et al. PIR2/Rnf144B regulates epithelial homeostasis by mediating degradation of p21(WAF1) and p63. Oncogene 2013; 32: 4758–4765.

    Article  CAS  Google Scholar 

  36. Tomasini R, Tsuchihara K, Wilhelm M, Fujitani M, Rufini A, Cheung CC et al. TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes & development 2008; 22: 2677–2691.

    Article  CAS  Google Scholar 

  37. Ravni A, Tissir F, Goffinet AM . DeltaNp73 transcription factors modulate cell survival and tumor development. Cell Cycle 2010; 9: 1523–1527.

    Article  CAS  Google Scholar 

  38. Dulloo I, Gopalan G, Melino G, Sabapathy K . The antiapoptotic DeltaNp73 is degraded in a c-Jun-dependent manner upon genotoxic stress through the antizyme-mediated pathway. Proc Natl Acad SciUSA 2010; 107: 4902–4907.

    Article  CAS  Google Scholar 

  39. Wilhelm MT, Rufini A, Wetzel MK, Tsuchihara K, Inoue S, Tomasini R et al. Isoform-specific p73 knockout mice reveal a novel role for delta Np73 in the DNA damage response pathway. Genes & development 2010; 24: 549–560.

    Article  CAS  Google Scholar 

  40. Bantel H, Simon HU . DeltaNp73beta is oncogenic in hepatocellular carcinoma by blocking apoptosis signaling via death receptors and mitochondria. Cell Cycle 2010; 9: 2710–2711.

    Article  Google Scholar 

  41. Tomasini R, Tsuchihara K, Wilhelm M, Fujitani M, Rufini A, Cheung CC et al. TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev 2008; 22: 2677–2691.

    Article  CAS  Google Scholar 

  42. Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 2012; 150: 1107–1120.

    Article  CAS  Google Scholar 

  43. Tomasini R, Mak TW, Melino G . The impact of p53 and p73 on aneuploidy and cancer. Trends Cell Biol 2008; 18: 244–252.

    Article  CAS  Google Scholar 

  44. Haruki N, Harano T, Masuda A, Kiyono T, Takahashi T, Tatematsu Y et al. Persistent increase in chromosome instability in lung cancer: possible indirect involvement of p53 inactivation. Am J Pathol 2001; 159: 1345–1352.

    Article  CAS  Google Scholar 

  45. Okayama H, Kohno T, Ishii Y, Shimada Y, Shiraishi K, Iwakawa R et al. Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res 2012; 72: 100–111.

    Article  CAS  Google Scholar 

  46. Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z . Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA 2010; 107: 7455–7460.

    Article  CAS  Google Scholar 

  47. Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A et al. MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 2005; 21: 2933–2942.

    Article  CAS  Google Scholar 

  48. Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad SciUSA 2010; 107: 7461–7466.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Medical Research Council, United Kingdom; MIUR, MinSan/IDI-IRCCS (RF73, RF57), ACC12, AIRC (2011-IG11955), AIRC 5xmille (MCO #9979) to GM Work was supported by Ministry of Education and Science of the Russian Federation (11.G34.31.0069) to GM & (14.B37.21.1967) to AAV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Melino.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amelio, I., Markert, E., Rufini, A. et al. p73 regulates serine biosynthesis in cancer. Oncogene 33, 5039–5046 (2014). https://doi.org/10.1038/onc.2013.456

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.456

Keywords

This article is cited by

Search

Quick links