Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A comparative survey of functional footprints of EGFR pathway mutations in human cancers

Abstract

Genes functioning in epidermal growth factor receptor (EGFR) signaling pathways are among the most frequently activated oncogenes in human cancers. We have conducted a comparative analysis of functional footprints (that is, effect on signaling and transcriptional landscapes in cells) associated with oncogenic and tumor suppressor mutations in EGFR pathway genes in human cancers. We have found that mutations in the EGFR pathway differentially have an impact on signaling and metabolic pathways in cancer cells in a mutation- and tissue-selective manner. For example, although signaling and metabolic profiles of breast tumors with PIK3CA or AKT1 mutations are, as expected, highly similar, they display markedly different, sometimes even opposite, profiles to those with ERBB2 or EGFR amplifications. On the other hand, although low-grade gliomas and glioblastomas, both brain cancers, driven by EGFR amplifications are highly functionally similar, their functional footprints are significantly different from lung and breast tumors driven by EGFR or ERBB2. Overall, these observations argue that, contrary to expectations, the mechanisms of tumorigenicity associated with mutations in different genes along the same pathway, or in the same gene across different tissues, may be highly different. We present evidence that oncogenic functional footprints in cancer cell lines have significantly diverged from those in tumor tissues, which potentially explains the discrepancy of our findings with the current knowledge. Nevertheless, our analyses reveal a common inflammatory response signature in EGFR-driven human cancers of different tissue origins. Our results may have implications in the design of therapeutic strategies in cancers driven by these oncogenes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Oda K, Matsuoka Y, Funahashi A, Kitano H . A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 2005; 1: 0010.

    Article  Google Scholar 

  2. Yarden Y, Sliwkowski MX . Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001; 2: 127–137.

    Article  CAS  Google Scholar 

  3. De Luca A, Maiello MR, D’Alessio A, Pergameno M, Normanno N . The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets 2012; 16 (Suppl 2): S17–S27.

    Article  CAS  Google Scholar 

  4. Ciardiello F, De Vita F, Orditura M, Tortora G . The role of EGFR inhibitors in nonsmall cell lung cancer. Curr Opin Oncol 2004; 16: 130–135.

    Article  CAS  Google Scholar 

  5. Salama AK, Flaherty KT . BRAF in melanoma: current strategies and future directions. Clin Cancer Res 2013; 19: 4326–4334.

    Article  CAS  Google Scholar 

  6. Karnoub AE, Weinberg RA . Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 2008; 9: 517–531.

    Article  CAS  Google Scholar 

  7. Pearson G, Bumeister R, Henry DO, Cobb MH, White MA . Uncoupling Raf1 from MEK1/2 impairs only a subset of cellular responses to Raf activation. J Biol Chem 2000; 275: 37303–37306.

    Article  CAS  Google Scholar 

  8. Parekh DB, Katso RM, Leslie NR, Downes CP, Procyk KJ, Waterfield MD et al. Beta1-integrin and PTEN control the phosphorylation of protein kinase C. Biochem J 2000; 352 (Pt 2): 425–433.

    Article  CAS  Google Scholar 

  9. Vincent EE, Elder DJ, Thomas EC, Phillips L, Morgan C, Pawade J et al. Akt phosphorylation on Thr308 but not on Ser473 correlates with Akt protein kinase activity in human non-small cell lung cancer. Br J Cancer 2011; 104: 1755–1761.

    Article  CAS  Google Scholar 

  10. Gallay N, Dos Santos C, Cuzin L, Bousquet M, Simmonet Gouy V, Chaussade C et al. The level of AKT phosphorylation on threonine 308 but not on serine 473 is associated with high-risk cytogenetics and predicts poor overall survival in acute myeloid leukaemia. Leukemia 2009; 23: 1029–1038.

    Article  CAS  Google Scholar 

  11. Uribe P, Andrade L, Gonzalez S . Lack of association between BRAF mutation and MAPK ERK activation in melanocytic nevi. J Invest Dermatol 2006; 126: 161–166.

    Article  CAS  Google Scholar 

  12. Hegi ME, Diserens AC, Bady P, Kamoshima Y, Kouwenhoven MC, Delorenzi M et al. Pathway analysis of glioblastoma tissue after preoperative treatment with the EGFR tyrosine kinase inhibitor gefitinib—a phase II trial. Mol Cancer Ther 2011; 10: 1102–1112.

    Article  CAS  Google Scholar 

  13. Komurov K, White MA, Ram PT . Use of data-biased random walks on graphs for the retrieval of context-specific networks from genomic data. PLoS Comput Biol 2010; 6: e1000889.

    Article  Google Scholar 

  14. Komurov K, Dursun S, Erdin S, Ram PT . NetWalker: a contextual network analysis tool for functional genomics. BMC Genomics 2012; 13: 282.

    Article  Google Scholar 

  15. Laplante M, Sabatini DM . mTOR signaling in growth control and disease. Cell 2012; 149: 274–293.

    Article  CAS  Google Scholar 

  16. Cresswell P, Ackerman AL, Giodini A, Peaper DR, Wearsch PA . Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol Rev 2005; 207: 145–157.

    Article  CAS  Google Scholar 

  17. Vyas JM, Van der Veen AG, Ploegh HL . The known unknowns of antigen processing and presentation. Nat Rev Immunol 2008; 8: 607–618.

    Article  CAS  Google Scholar 

  18. Wolpert F, Roth P, Lamszus K, Tabatabai G, Weller M, Eisele G . HLA-E contributes to an immune-inhibitory phenotype of glioblastoma stem-like cells. J Neuroimmunol 2012; 250: 27–34.

    Article  CAS  Google Scholar 

  19. Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012; 483: 570–575.

    Article  CAS  Google Scholar 

  20. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012; 483: 603–607.

    Article  CAS  Google Scholar 

  21. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006; 10: 515–527.

    Article  CAS  Google Scholar 

  22. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010; 17: 98–110.

    Article  CAS  Google Scholar 

  23. Chen Y, Zhu J, Lum PY, Yang X, Pinto S, MacNeil DJ et al. Variations in DNA elucidate molecular networks that cause disease. Nature 2008; 452: 429–435.

    Article  CAS  Google Scholar 

  24. Akavia UD, Litvin O, Kim J, Sanchez-Garcia F, Kotliar D, Causton HC et al. An integrated approach to uncover drivers of cancer. Cell 2010; 143: 1005–1017.

    Article  CAS  Google Scholar 

  25. Segal E, Shapira M, Regev A, Pe'er D, Botstein D, Koller D et al. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 2003; 34: 166–176.

    Article  CAS  Google Scholar 

  26. Fukuoka M, Wu YL, Thongprasert S, Sunpaweravong P, Leong SS, Sriuranpong V et al. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J Clin Oncol 2011; 29: 2866–2874.

    Article  CAS  Google Scholar 

  27. Dahabreh IJ, Linardou H, Siannis F, Kosmidis P, Bafaloukos D, Murray S . Somatic EGFR mutation and gene copy gain as predictive biomarkers for response to tyrosine kinase inhibitors in non-small cell lung cancer. Clin Cancer Res 2010; 16: 291–303.

    Article  CAS  Google Scholar 

  28. Troiani T, Martinelli E, Capasso A, Morgillo F, Orditura M, De Vita F et al. Targeting EGFR in pancreatic cancer treatment. Curr Drug Targets 2012; 13: 802–810.

    Article  CAS  Google Scholar 

  29. Taylor TE, Furnari FB, Cavenee WK . Targeting EGFR for treatment of glioblastoma: molecular basis to overcome resistance. Curr Cancer Drug Targets 2012; 12: 197–209.

    Article  CAS  Google Scholar 

  30. Saxena R, Dwivedi A . ErbB family receptor inhibitors as therapeutic agents in breast cancer: current status and future clinical perspective. Med Res Rev 2010; 32: 166–215.

    Article  Google Scholar 

  31. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr., Kinzler KW . Cancer genome landscapes. Science 2013; 339: 1546–1558.

    Article  CAS  Google Scholar 

  32. Wang K, Li M, Hakonarson H . ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010; 38: e164.

    Article  Google Scholar 

  33. Mishra GR, Suresh M, Kumaran K, Kannabiran N, Suresh S, Bala P et al. Human protein reference database—2006 update. Nucleic Acids Res 2006; 34 (Database issue): D411–D414.

    Article  CAS  Google Scholar 

  34. Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L et al. MINT: the molecular INTeraction database. Nucleic Acids Res 2007; 35 (Database issue): D572–D574.

    Article  CAS  Google Scholar 

  35. Joshi-Tope G, Gillespie M, Vastrik I, D'Eustachio P, Schmidt E, de Bono B et al. Reactome: a knowledgebase of biological pathways. Nucleic Acids Res 2005; 33 (Database issue): D428–D432.

    Article  CAS  Google Scholar 

  36. Bader GD, Donaldson I, Wolting C, Ouellette BF, Pawson T, Hogue CW . BIND—the biomolecular interaction network database. Nucleic Acids Res 2001; 29: 242–245.

    Article  CAS  Google Scholar 

  37. Breitkreutz BJ, Stark C, Reguly T, Boucher L, Breitkreutz A, Livstone M et al. The BioGRID interaction database: 2008 update. Nucleic Acids Res 2008; 36 (Database issue): D637–D640.

    CAS  PubMed  Google Scholar 

  38. Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur O, Anwar N et al. Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res 2011; 39 (Database issue): D685–D690.

    Article  CAS  Google Scholar 

  39. Wingender E, Chen X, Hehl R, Karas H, Liebich I, Matys V et al. TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res 2000; 28: 316–319.

    Article  CAS  Google Scholar 

  40. Griffith OL, Montgomery SB, Bernier B, Chu B, Kasaian K, Aerts S et al. ORegAnno: an open-access community-driven resource for regulatory annotation. Nucleic Acids Res 2008; 36 (Database issue): D107–D113.

    CAS  PubMed  Google Scholar 

  41. Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan KK, Cheng C et al. Architecture of the human regulatory network derived from ENCODE data. Nature 2012; 489: 91–100.

    Article  CAS  Google Scholar 

  42. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, Mesirov JP . Molecular signatures database (MSigDB) 3.0. Bioinformatics 2011; 27: 1739–1740.

    Article  CAS  Google Scholar 

  43. Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 2009; 37 (Database issue): D603–D610.

    Article  CAS  Google Scholar 

  44. Schellenberger J, Park JO, Conrad TM, Palsson BO . BiGG: a biochemical genetic and genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 2010; 11: 213.

    Article  Google Scholar 

  45. Kanehisa M, Goto S . KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28: 27–30.

    Article  CAS  Google Scholar 

  46. Maglott D, Ostell J, Pruitt KD, Tatusova T . Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res 2007; 35 (Database issue): D26–D31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Marlene-Ride Cincinnati Breast Cancer Foundation Award and Cincinnati Children’s Trustee Award to KK. We thank Biplab DasGupta for helpful discussions of the results. ASG acknowledges CONACYT-México for support from Estancias Posdoctorales al Extranjero (grant number 203863).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Komurov.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lane, A., Segura-Cabrera, A. & Komurov, K. A comparative survey of functional footprints of EGFR pathway mutations in human cancers. Oncogene 33, 5078–5089 (2014). https://doi.org/10.1038/onc.2013.452

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.452

Keywords

This article is cited by

Search

Quick links