Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HSP-90 inhibitor ganetespib is synergistic with doxorubicin in small cell lung cancer

Abstract

Small cell lung cancer (SCLC) at advanced stage is considered an incurable disease. Despite good response to initial chemotherapy, the responses in SCLC patients with metastatic disease are of short duration and resistance inevitably occurs. Although several target-specific drugs have altered the paradigm of treatment for many other cancers, we have yet to witness a revolution of the same magnitude in SCLC treatment. Anthracyclines, such as doxorubicin, have definite activity in this disease, and ganetespib has shown promising activity in preclinical models but underwhelming activity as a single agent in SCLC patients. Using SCLC cell lines, we demonstrated that ganetespib (IC50: 31 nM) was much more potent than 17-allylamino-17-demethoxygeldanamycin (17-AAG), a geldanamycin derivative (IC50: 16 μM). Ganetespib inhibited SCLC cell growth via induction of persistent G2/M arrest and Caspase 3-dependent cell death. MTS assay revealed that ganetespib synergized with both doxorubicin and etoposide, two topoisomerase II inhibitors commonly used in SCLC chemotherapy. Expression of receptor-interacting serine/threonine-protein kinase 1 (RIP1), a protein that may function as a pro-survival scaffold protein or a pro-death kinase in TNFR1-activated cells, was induced by doxorubicin and downregulated by ganetespib. Depletion of RIP1 by either RIP1 small interfering RNA (siRNA) or ganetespib sensitized doxorubicin-induced cell death, suggesting that RIP1 may promote survival in doxorubicin-treated cells and that ganetespib may synergize with doxorubicin in part through the downregulation of RIP1. In comparison to ganetespib or doxorubicin alone, the ganetespib+doxorubicin combination caused significantly more growth regression and death of human SCLC xenografts in immunocompromised mice. We conclude that ganetespib and doxorubicin combination exhibits significant synergy and is efficacious in inhibiting SCLC growth in vitro and in mouse xenograft models. Our preclinical study suggests that ganetespib and doxorubicin combination therapy may be an effective strategy for SCLC treatment, which warrants clinical testing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Jackman DM, Johnson BE . Small-cell lung cancer. Lancet 2005; 366: 1385–1396.

    Article  CAS  PubMed  Google Scholar 

  2. Schmittel A . Second-line therapy for small-cell lung cancer. Expert Rev Anticancer Ther 2011; 11: 631–637.

    Article  PubMed  Google Scholar 

  3. Lally BE, Urbanic JJ, Blackstock AW, Miller AA, Perry MC . Small cell lung cancer: have we made any progress over the last 25 years? Oncologist 2007; 12: 1096–1104.

    Article  PubMed  Google Scholar 

  4. Singhal SS, Yadav S, Singhal J, Awasthi YC, Awasthi S . Determinants of differential doxorubicin sensitivity between SCLC and NSCLC. FEBS Lett 2006; 580: 2258–2264.

    Article  CAS  PubMed  Google Scholar 

  5. von Pawel J, Schiller JH, Shepherd FA, Fields SZ, Kleisbauer JP, Chrysson NG et al. Topotecan versus cyclophosphamide, doxorubicin, and vincristine for the treatment of recurrent small-cell lung cancer. J Clin Oncol 1999; 17: 658–667.

    Article  CAS  PubMed  Google Scholar 

  6. Shibakura M, Niiya K, Kiguchi T, Kitajima I, Niiya M, Asaumi N et al. Induction of IL-8 and monoclyte chemoattractant protein-1 by doxorubicin in human small cell lung carcinoma cells. Int J Cancer 2003; 103: 380–386.

    Article  CAS  PubMed  Google Scholar 

  7. Gangadharan C, Thoh M, Manna SK . Inhibition of constitutive activity of nuclear transcription factor kappaB sensitizes doxorubicin-resistant cells to apoptosis. J Cell Biochem 2009; 107: 203–213.

    Article  CAS  PubMed  Google Scholar 

  8. Califano R, Abidin AZ, Peck R, Faivre-Finn C, Lorigan P . Management of small cell lung cancer: recent developments for optimal care. Drugs 2012; 72: 471–490.

    Article  CAS  PubMed  Google Scholar 

  9. Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR . Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 2006; 31: 164–172.

    Article  CAS  PubMed  Google Scholar 

  10. Whitesell L, Lindquist SL . HSP90 and the chaperoning of cancer. Nat Rev Cancer 2005; 5: 761–772.

    Article  CAS  PubMed  Google Scholar 

  11. Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 2003; 425: 407–410.

    Article  CAS  PubMed  Google Scholar 

  12. Xu W, Neckers L . Targeting the molecular chaperone heat shock protein 90 provides a multifaceted effect on diverse cell signaling pathways of cancer cells. Clin Cancer Res 2007; 13: 1625–1629.

    Article  CAS  PubMed  Google Scholar 

  13. Lewis J, Devin A, Miller A, Lin Y, Rodriguez Y, Neckers L et al. Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. J Biol Chem 2000; 275: 10519–10526.

    Article  CAS  PubMed  Google Scholar 

  14. Sos ML, Dietlein F, Peifer M, Schöttle J, Balke-Want H, Müller C et al. A framework for identification of actionable cancer genome dependencies in small cell lung cancer. Proc Natl Acad Sci USA 2012; 109: 17034–17039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rudin CM, Durinck S, Stawiski EW, Poirier JT, Modrusan Z, Shames DS et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet 2012; 44: 1111–1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ying W, Du Z, Sun L, Foley KP, Proia DA, Blackman RK et al. Ganetespib, a unique triazolone-containing Hsp90 inhibitor, exhibits potent antitumor activity and a superior safety profile for cancer therapy. Mol Cancer Ther 2012; 11: 475–484.

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Trepel JB, Neckers LM, Giaccone G . STA-9090, a small-molecule Hsp90 inhibitor for the potential treatment of cancer. Curr Opin Investig Drugs 2010; 11: 1466–1476.

    CAS  PubMed  Google Scholar 

  18. Kim YS, Alarcon SV, Lee S, Lee MJ, Giaccone G, Neckers L et al. Update on Hsp90 inhibitors in clinical trial. Curr Top Med Chem 2009; 9: 1479–1492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shimamura T, Perera SA, Foley KP, Sang J, Rodig SJ et al. Ganetespib (STA-9090), a non-Geldanamycin HSP90 inhibitor, has potent antitumor activity in in vitro and in vivo models of non-small cell lung cancer. Clin Cancer Res 2012; 18: 4973–4985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Proia DA, Sang J, He S, Smith DL, Sequeira M, Zhang C et al. Synergistic activity of the Hsp90 inhibitor ganetespib with taxanes in non-small cell lung cancer models. Invest New Drugs 2012; 30: 2201–2209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bansal H, Bansal S, Rao M, Foley KP, Sang J, Proia DA et al. Heat shock protein 90 regulates the expression of Wilms tumor 1 protein in myeloid leukemias. Blood 2010; 116: 4591–4599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rodina A, Vilenchik M, Moulick K, Aguirre J, Kim J, Chiang A et al. Selective compounds define Hsp90 as a major inhibitor of apoptosis in small-cell lung cancer. Nat Chem Biol 2007; 3: 498–507.

    Article  CAS  PubMed  Google Scholar 

  23. Proia DA, Foley KP, Korbut T, Sang J, Smith D, Bates RC et al. Multifaceted intervention by the Hsp90 inhibitor ganetespib (STA-9090) in cancer cells with activated JAK/STAT signaling. PLoS One 2011; 6: e18552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nishizuka S, Charboneau L, Young L, Major S, Reinhold WC, Waltham M et al. Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays. Proc Natl Acad Sci USA 2003; 100: 14229–14234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sheehan KM, Gulmann C, Eichler GS, Weinstein JN, Barrett HL, Kay EW et al. Signal pathway profiling of epithelial and stromal compartments of colonic carcinoma reveals epithelial-mesenchymal transition. Oncogene 2008; 27: 323–331.

    Article  CAS  PubMed  Google Scholar 

  26. Choi HJ, Fukui M, Zhu BT . Role of cyclin B1/Cdc2 up-regulation in the development of mitotic prometaphase arrest in human breast cancer cells treated with nocodazole. PLoS One 2011; 6: e24312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scaffidi C, Volkland J, Blomberg I, Hoffmann I, Krammer PH, Peter ME et al. Phosphorylation of FADD/ MORT1 at serine 194 and association with a 70-kDa cell cycle-regulated protein kinase. J Immunol 2000; 164: 1236–1242.

    Article  CAS  PubMed  Google Scholar 

  28. Chaitanya GV, Steven AJ, Babu PP . PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal 2010; 8: 31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang H, Zhou X, McQuade T, Li J, Chan FK, Zhang J et al. Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 2011; 471: 373–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mahoney DJ, Cheung HH, Mrad RL, Plenchette S, Simard C, Enwere E et al. Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc Natl Acad Sci USA 2008; 105: 11778–11783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN, Zobel K, Deshayes K et al. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. J Biol Chem 2008; 283: 24295–24299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chandele A, Prasad V, Jagtap JC, Shukla R, Shastry PR . Upregulation of survivin in G2/M cells and inhibition of caspase 9 activity enhances resistance in staurosporine-induced apoptosis. Neoplasia 2004; 6: 29–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Srethapakdi M, Liu F, Tavorath R, Rosen N . Inhibition of Hsp90 function by ansamycins causes retinoblastoma gene product-dependent G1 arrest. Cancer Res 2000; 60: 3940–3946.

    CAS  PubMed  Google Scholar 

  34. Robles AI, Wright MH, Gandhi B, Feis SS, Hanigan CL, Wiestner A et al. Schedule-dependent synergy between the heat shock protein 90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin and doxorubicin restores apoptosis to p53-mutant lymphoma cell lines. Clin Cancer Res 2006; 12: 6547–6556.

    Article  CAS  PubMed  Google Scholar 

  35. Sugimoto K, Sasaki M, Isobe Y, Tsutsui M, Suto H, Ando J et al. Hsp90-inhibitor geldanamycin abrogates G2 arrest in p53-negative leukemia cell lines through the depletion of Chk1. Oncogene 2008; 27: 3091–3101.

    Article  CAS  PubMed  Google Scholar 

  36. Blagosklonny MV, Fojo T, Bhalla KN, Kim JS, Trepel JB, Figg WD et al. The Hsp90 inhibitor geldanamycin selectively sensitizes Bcr-Abl-expressing leukemia cells to cytotoxic chemotherapy. Leukemia 2001; 15: 1537–1543.

    Article  CAS  PubMed  Google Scholar 

  37. Demidenko ZN, Vivo C, Halicka HD, Li CJ, Bhalla K, Broude EV et al. Pharmacological induction of Hsp70 protects apoptosis-prone cells from doxorubicin: comparison with caspase-inhibitor- and cycle-arrest-mediated cytoprotection. Cell Death Differ 2006; 13: 1434–1441.

    Article  CAS  PubMed  Google Scholar 

  38. Davenport EL, Moore HE, Dunlop AS, Sharp SY, Workman P, Morgan GJ et al. Heat shock protein inhibition is associated with activation of the unfolded protein response pathway in myeloma plasma cells. Blood 2007; 110: 2641–2649.

    Article  CAS  PubMed  Google Scholar 

  39. Banerji U, Judson I, Workman P . The clinical applications of heat shock protein inhibitors in cancer - present and future. Curr Cancer Drug Targets 2003; 3: 385–390.

    Article  CAS  PubMed  Google Scholar 

  40. Powers MV, Workman P . Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors. Endocr Relat Cancer 2006; 13 (Suppl 1): S125–S135.

    Article  CAS  PubMed  Google Scholar 

  41. Declercq W, Vanden Berghe T, Vandenabeele P . RIP kinases at the crossroads of cell death and survival. Cell 2009; 138: 229–232.

    Article  CAS  PubMed  Google Scholar 

  42. Bian X, McAllister-Lucas LM, Shao F, Schumacher KR, Feng Z, Porter AG et al. NF-kappa B activation mediates doxorubicin-induced cell death in N-type neuroblastoma cells. J Biol Chem 2001; 276: 48921–48929.

    Article  CAS  PubMed  Google Scholar 

  43. Roth BJ, Johnson DH, Einhorn LH, Schacter LP, Cherng NC, Cohen HJ et al. Randomized study of cyclophosphamide, doxorubicin, and vincristine versus etoposide and cisplatin versus alternation of these two regimens in extensive small-cell lung cancer: a phase III trial of the Southeastern Cancer Study Group. J Clin Oncol 1992; 10: 282–291.

    Article  CAS  PubMed  Google Scholar 

  44. Fukuoka M, Furuse K, Saijo N, Nishiwaki Y, Ikegami H, Tamura T et al. Randomized trial of cyclophosphamide, doxorubicin, and vincristine versus cisplatin and etoposide versus alternation of these regimens in small-cell lung cancer. J Natl Cancer Inst 1991; 83: 855–861.

    Article  CAS  PubMed  Google Scholar 

  45. Sculier JP, Klastersky J, Libert P, Ravez P, Brohee D, Vandermoten D et al. A phase II study evaluating CAVi (cyclophosphamide, adriamycin, vincristine) potentiated or not by amphotericin B entrapped into sonicated liposomes, as salvage therapy for small cell lung cancer. Lung Cancer 1990; 6: 110–118.

    Article  Google Scholar 

  46. Shepherd FA, Evans WK, MacCormick R, Feld R, Yau JC . Cyclophosphamide, doxorubicin, and vincristine in etoposide- and cisplatin-resistant small cell lung cancer. Cancer Treat Rep 1987; 71: 941–944.

    CAS  PubMed  Google Scholar 

  47. Pelayo Alvarez M, Gallego Rubio O, Bonfill Cosp X, Agra Varela Y . Chemotherapy versus best supportive care for extensive small cell lung cancer. Cochrane Database Syst Rev 2009; 7: CD001990.

    Google Scholar 

  48. Ettinger DS, Jotte R, Lorigan P, Gupta V, Garbo L, Alemany C et al. Phase II study of amrubicin as second-line therapy in patients with platinum-refractory small-cell lung cancer. J Clin Oncol 2010; 28: 2598–2603.

    Article  PubMed  Google Scholar 

  49. Kotani Y, Satouchi M, Ando M, Nakagawa K, Yamamoto N, Ichinose Y et al. A phase III study comparing amrubicin and cisplatin (AP) with irinotecan and cisplatin (IP) for the treatment of extended-stage small cell lung cancer (ED-SCLC): JCOG0509. J Clin Oncol (Meeting Abstracts) 2012; 30 (suppl): 7003.

    Google Scholar 

  50. Cook RM, Miller YE, Bunn PA Jr. . Small cell lung cancer: etiology, biology, clinical features, staging, and treatment. Curr Probl Cancer 1993; 17: 69–141.

    Article  CAS  PubMed  Google Scholar 

  51. Chou TC . Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 2010; 70: 440–446.

    Article  CAS  PubMed  Google Scholar 

  52. Park KS, Kim DS, Ko C, Lee SJ, Oh SH, Kim SY et al. TNF-alpha mediated NF-kappaB activation is constantly extended by transglutaminase 2. Front Biosci (Elite Ed) 2011; 3: 341–354.

    Google Scholar 

  53. Pierobon M, Vanmeter AJ, Moroni N, Galdi F, Petricoin EF 3rd . Reverse-phase protein microarrays. Methods Mol Biol 2012; 823: 215–235.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Leonard M Neckers for stimulating discussion during the course of the study and Dr Weiwen Ying (Synta Pharmaceuticals) for his valuable comments on the manuscript and for providing ganetespib for the study. This research was funded by the National Cancer Institute Intramural Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y Wang or G Giaccone.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, CH., Park, KS., Lee, DH. et al. HSP-90 inhibitor ganetespib is synergistic with doxorubicin in small cell lung cancer. Oncogene 33, 4867–4876 (2014). https://doi.org/10.1038/onc.2013.439

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.439

Keywords

This article is cited by

Search

Quick links