Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Immunosuppressive networks and checkpoints controlling antitumor immunity and their blockade in the development of cancer immunotherapeutics and vaccines

Abstract

Vaccines that promote protective adaptive immune responses have been successfully developed against a range of infectious diseases, and these are normally administered prior to exposure with the relevant virus or bacteria. Adaptive immunity also plays a critical role in the control of tumors. Immunotherapeutics and vaccines that promote effector T cell responses have the potential to eliminate tumors when used in a therapeutic setting. However, the induction of protective antitumor immunity is compromised by innate immunosuppressive mechanisms and regulatory cells that often dominate the tumor microenvironment. Recent studies have shown that blocking these suppressor cells and immune checkpoints to allow induction of antitumor immunity is a successful immunotherapeutic modality for the treatment of cancer. Furthermore, stimulation of innate and consequently adaptive immune responses with concomitant inhibition of immune suppression, especially that mediated by regulatory T (Treg) cells, is emerging as a promising approach to enhance the efficacy of therapeutic vaccines against cancer. This review describes the immunosuppressive mechanisms controlling antitumor immunity and the novel strategies being employed to design effective immunotherapeutics against tumors based on inhibition of suppressor cells or blockade of immune checkpoints to allow induction of more potent effector T cell responses. This review also discusses the potential of using a combination of adjuvants with inhibition of immune checkpoint or suppressor cells for therapeutic vaccines and the translation of pre-clinical studies to the next-generation vaccines against cancer in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 2007; 450: 903–907.

    CAS  PubMed  Google Scholar 

  2. Smyth MJ, Dunn GP, Schreiber RD . Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 2006; 90: 1–50.

    CAS  PubMed  Google Scholar 

  3. Pardoll DM . The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12: 252–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Byrne WL, Mills KH, Lederer JA, O'Sullivan GC . Targeting regulatory T cells in cancer. Cancer Res 2011; 71: 6915–6920.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Baxevanis CN, Perez SA, Papamichail M . Combinatorial treatments including vaccines, chemotherapy and monoclonal antibodies for cancer therapy. Cancer Immunol Immunother 2009; 58: 317–324.

    PubMed  Google Scholar 

  6. Banchereau J, Palucka AK . Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005; 5: 296–306.

    CAS  PubMed  Google Scholar 

  7. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010; 363: 411–422.

    CAS  PubMed  Google Scholar 

  8. Melief CJ . Cancer immunotherapy by dendritic cells. Immunity 2008; 29: 372–383.

    CAS  PubMed  Google Scholar 

  9. Palucka K, Ueno H, Zurawski G, Fay J, Banchereau J . Building on dendritic cell subsets to improve cancer vaccines. Curr Opin Immunol 2010; 22: 258–263.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Love WE, Bernhard JD, Bordeaux JS . Topical imiquimod or fluorouracil therapy for basal and squamous cell carcinoma: a systematic review. Arch Dermatol 2009; 145: 1431–1438.

    CAS  PubMed  Google Scholar 

  11. Golgher D, Jones E, Powrie F, Elliott T, Gallimore A . Depletion of CD25+ regulatory cells uncovers immune responses to shared murine tumor rejection antigens. Eur J Immunol 2002; 32: 3267–3275.

    CAS  PubMed  Google Scholar 

  12. Steitz J, Bruck J, Lenz J, Knop J, Tuting T . Depletion of CD25(+) CD4(+) T cells and treatment with tyrosinase-related protein 2-transduced dendritic cells enhance the interferon alpha-induced, CD8(+) T-cell-dependent immune defense of B16 melanoma. Cancer Res 2001; 61: 8643–8646.

    CAS  PubMed  Google Scholar 

  13. Jarnicki AG, Lysaght J, Todryk S, Mills KH . Suppression of antitumor immunity by IL-10 and TGF-beta-producing T cells infiltrating the growing tumor: influence of tumor environment on the induction of CD4+ and CD8+ regulatory T cells. J Immunol 2006; 177: 896–904.

    CAS  PubMed  Google Scholar 

  14. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012; 366: 2455–2465.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366: 2443–2454.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Corsello SM, Barnabei A, Marchetti P, De Vecchis L, Salvatori R, Torino F . Endocrine side effects induced by immune checkpoint inhibitors. J Clin Endocrinol Metab 2013; 98: 1361–1375.

    CAS  PubMed  Google Scholar 

  17. Mills KH . Regulatory T cells: friend or foe in immunity to infection? Nat Rev Immunol 2004; 4: 841–855.

    CAS  PubMed  Google Scholar 

  18. Bluestone JA, Abbas AK . Natural versus adaptive regulatory T cells. Nat Rev Immunol 2003; 3: 253–257.

    CAS  PubMed  Google Scholar 

  19. Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer research 2001; 61: 4766–4772.

    CAS  PubMed  Google Scholar 

  20. Mougiakakos D, Choudhury A, Lladser A, Kiessling R, Johansson CC . Regulatory T cells in cancer. Adv Cancer Res 2010; 107: 57–117.

    CAS  PubMed  Google Scholar 

  21. Wang RF, Peng G, Wang HY . Regulatory T cells and Toll-like receptors in tumor immunity. Semin Immunol 2006; 18: 136–142.

    CAS  PubMed  Google Scholar 

  22. Hoon DS, Foshag LJ, Nizze AS, Bohman R, Morton DL . Suppressor cell activity in a randomized trial of patients receiving active specific immunotherapy with melanoma cell vaccine and low dosages of cyclophosphamide. Cancer Res 1990; 50: 5358–5364.

    CAS  PubMed  Google Scholar 

  23. Rasku MA, Clem AL, Telang S, Taft B, Gettings K, Gragg H et al. Transient T cell depletion causes regression of melanoma metastases. J Transl Med 2008; 6: 12.

    PubMed  PubMed Central  Google Scholar 

  24. Rech AJ, Vonderheide RH . Clinical use of anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells. Ann NY Acad Sci 2009; 1174: 99–106.

    CAS  PubMed  Google Scholar 

  25. Morita R, Hirohashi Y, Sato N . Depletion of Tregs in vivo: a promising approach to enhance antitumor immunity without autoimmunity. Immunotherapy 2012; 4: 1103–1105.

    CAS  PubMed  Google Scholar 

  26. Ko K, Yamazaki S, Nakamura K, Nishioka T, Hirota K, Yamaguchi T et al. Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+CD25+CD4+ regulatory T cells. J Exp Med 2005; 202: 885–891.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Coe D, Begom S, Addey C, White M, Dyson J, Chai JG . Depletion of regulatory T cells by anti-GITR mAb as a novel mechanism for cancer immunotherapy. Cancer Immunol Immunother 2010; 59: 1367–1377.

    CAS  PubMed  Google Scholar 

  28. Tan W, Zhang W, Strasner A, Grivennikov S, Cheng JQ, Hoffman RM et al. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature 2011; 470: 548–553.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Amendola M, Passerini L, Pucci F, Gentner B, Bacchetta R, Naldini L . Regulated and multiple miRNA and siRNA delivery into primary cells by a lentiviral platform. Mol Ther 2009; 17: 1039–1052.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Casares N, Rudilla F, Arribillaga L, Llopiz D, Riezu-Boj JI, Lozano T et al. A peptide inhibitor of FOXP3 impairs regulatory T cell activity and improves vaccine efficacy in mice. J Immunol 2010; 185: 5150–5159.

    CAS  PubMed  Google Scholar 

  31. Karanikas V, Speletas M, Zamanakou M, Kalala F, Loules G, Kerenidi T et al. Foxp3 expression in human cancer cells. J Transl Med 2008; 6: 19.

    PubMed  PubMed Central  Google Scholar 

  32. Zou L, Barnett B, Safah H, Larussa VF, Evdemon-Hogan M, Mottram P et al. Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res 2004; 64: 8451–8455.

    CAS  PubMed  Google Scholar 

  33. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10: 942–949.

    CAS  PubMed  Google Scholar 

  34. Zhao E, Wang L, Dai J, Kryczek I, Wei S, Vatan L et al. Regulatory T cells in the bone marrow microenvironment in patients with prostate cancer. Oncoimmunology 2012; 1: 152–161.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Youn JI, Nagaraj S, Collazo M, Gabrilovich DI . Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 2008; 181: 5791–5802.

    CAS  PubMed  Google Scholar 

  36. Gabrilovich DI, Nagaraj S . Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9: 162–174.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S . Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 2007; 67: 4507–4513.

    CAS  PubMed  Google Scholar 

  38. Ostrand-Rosenberg S, Sinha P . Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 2009; 182: 4499–4506.

    CAS  PubMed  Google Scholar 

  39. Peranzoni E, Zilio S, Marigo I, Dolcetti L, Zanovello P, Mandruzzato S et al. Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol 2010; 22: 238–244.

    CAS  PubMed  Google Scholar 

  40. Bunt SK, Clements VK, Hanson EM, Sinha P, Ostrand-Rosenberg S . Inflammation enhances myeloid-derived suppressor cell cross-talk by signaling through Toll-like receptor 4. J Leukocyte Biol 2009; 85: 996–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Delano MJ, Scumpia PO, Weinstein JS, Coco D, Nagaraj S, Kelly-Scumpia KM et al. MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J Exp Med 2007; 204: 1463–1474.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bronte V, Wang M, Overwijk WW, Surman DR, Pericle F, Rosenberg SA et al. Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells. J Immunol 1998; 161: 5313–5320.

    CAS  PubMed  Google Scholar 

  43. Hoechst B, Gamrekelashvili J, Manns MP, Greten TF, Korangy F . Plasticity of human Th17 cells and iTregs is orchestrated by different subsets of myeloid cells. Blood 2011; 117: 6532–6541.

    CAS  PubMed  Google Scholar 

  44. Serafini P, Mgebroff S, Noonan K, Borrello I . Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 2008; 68: 5439–5449.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S . Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 2007; 179: 977–983.

    CAS  PubMed  Google Scholar 

  46. Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J et al. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 2006; 66: 1123–1131.

    CAS  PubMed  Google Scholar 

  47. Ostrand-Rosenberg S . Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother 2010; 59: 1593–1600.

    PubMed  PubMed Central  Google Scholar 

  48. Stewart TJ, Smyth MJ . Improving cancer immunotherapy by targeting tumor-induced immune suppression. Cancer Metastasis Rev 2011; 30: 125–140.

    CAS  PubMed  Google Scholar 

  49. Gabrilovich DI, Velders MP, Sotomayor EM, Kast WM . Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J Immunol 2001; 166: 5398–5406.

    CAS  PubMed  Google Scholar 

  50. Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ et al. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 2006; 66: 9299–9307.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nefedova Y, Fishman M, Sherman S, Wang X, Beg AA, Gabrilovich DI . Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res 2007; 67: 11021–11028.

    CAS  PubMed  Google Scholar 

  52. Lathers DM, Clark JI, Achille NJ, Young MR . Phase 1B study to improve immune responses in head and neck cancer patients using escalating doses of 25-hydroxyvitamin D3. Cancer Immunol Immunother 2004; 53: 422–430.

    CAS  PubMed  Google Scholar 

  53. Ugel S, Delpozzo F, Desantis G, Papalini F, Simonato F, Sonda N et al. Therapeutic targeting of myeloid-derived suppressor cells. Curr Opin Pharmacol 2009; 9: 470–481.

    CAS  PubMed  Google Scholar 

  54. Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM . Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 2005; 11: 6713–6721.

    CAS  PubMed  Google Scholar 

  55. Ko JS, Rayman P, Ireland J, Swaidani S, Li G, Bunting KD et al. Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res 2010; 70: 3526–3536.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P et al. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 2009; 15: 2148–2157.

    CAS  PubMed  Google Scholar 

  57. Ozao-Choy J, Ma G, Kao J, Wang GX, Meseck M, Sung M et al. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res 2009; 69: 2514–2522.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res 2010; 70: 3052–3061.

    CAS  PubMed  Google Scholar 

  59. Kodumudi KN, Woan K, Gilvary DL, Sahakian E, Wei S, Djeu JY . A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clin Cancer Res 2010; 16: 4583–4594.

    CAS  PubMed  Google Scholar 

  60. Kusmartsev S, Cheng F, Yu B, Nefedova Y, Sotomayor E, Lush R et al. All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res 2003; 63: 4441–4449.

    CAS  PubMed  Google Scholar 

  61. Sinha P, Clements VK, Ostrand-Rosenberg S . Interleukin-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis. Cancer Res 2005; 65: 11743–11751.

    CAS  PubMed  Google Scholar 

  62. Sinha P, Clements VK, Miller S, Ostrand-Rosenberg S . Tumor immunity: a balancing act between T cell activation, macrophage activation and tumor-induced immune suppression. Cancer Immunol Immunother 2005; 54: 1137–1142.

    CAS  PubMed  Google Scholar 

  63. Nagaraj S, Youn JI, Weber H, Iclozan C, Lu L, Cotter MJ et al. Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clin Cancer Res 2010; 16: 1812–1823.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Fujita M, Kohanbash G, Fellows-Mayle W, Hamilton RL, Komohara Y, Decker SA et al. COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Res 2011; 71: 2664–2674.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Obermajer N, Muthuswamy R, Lesnock J, Edwards RP, Kalinski P . Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood 2011; 118: 5498–5505.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. De Santo C, Serafini P, Marigo I, Dolcetti L, Bolla M, Del Soldato P et al. Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci USA 2005; 102: 4185–4190.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Allavena P, Sica A, Solinas G, Porta C, Mantovani A . The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 2008; 66: 1–9.

    PubMed  Google Scholar 

  68. Solinas G, Germano G, Mantovani A, Allavena P . Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 2009; 86: 1065–1073.

    CAS  PubMed  Google Scholar 

  69. Sica A, Bronte V . Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 2007; 117: 1155–1166.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG et al. Macrophage polarization in tumour progression. Semin Cancer Biol 2008; 18: 349–355.

    CAS  PubMed  Google Scholar 

  71. Fischer C, Jonckx B, Mazzone M, Zacchigna S, Loges S, Pattarini L et al. Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 2007; 131: 463–475.

    CAS  PubMed  Google Scholar 

  72. Zhang W, Zhu XD, Sun HC, Xiong YQ, Zhuang PY, Xu HX et al. Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin Cancer Res 2010; 16: 3420–3430.

    CAS  PubMed  Google Scholar 

  73. Ahn GO, Tseng D, Liao CH, Dorie MJ, Czechowicz A, Brown JM . Inhibition of Mac-1 (CD11b/CD18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proc Natl Acad Sci USA 2010; 107: 8363–8368.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Mizutani K, Sud S, McGregor NA, Martinovski G, Rice BT, Craig MJ et al. The chemokine CCL2 increases prostate tumor growth and bone metastasis through macrophage and osteoclast recruitment. Neoplasia 2009; 11: 1235–1242.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011; 475: 222–225.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhu X, Fujita M, Snyder LA, Okada H . Systemic delivery of neutralizing antibody targeting CCL2 for glioma therapy. J Neurooncol 2011; 104: 83–92.

    CAS  PubMed  Google Scholar 

  77. Kubota Y, Takubo K, Shimizu T, Ohno H, Kishi K, Shibuya M et al. M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J Exp Med 2009; 206: 1089–1102.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Manthey CL, Johnson DL, Illig CR, Tuman RW, Zhou Z, Baker JF et al. JNJ-28312141, a novel orally active colony-stimulating factor-1 receptor/FMS-related receptor tyrosine kinase-3 receptor tyrosine kinase inhibitor with potential utility in solid tumors, bone metastases, and acute myeloid leukemia. Mol Cancer Ther 2009; 8: 3151–3161.

    CAS  PubMed  Google Scholar 

  79. Paulus P, Stanley ER, Schafer R, Abraham D, Aharinejad S . Colony-stimulating factor-1 antibody reverses chemoresistance in human MCF-7 breast cancer xenografts. Cancer Res 2006; 66: 4349–4356.

    CAS  PubMed  Google Scholar 

  80. Pyonteck SM, Gadea BB, Wang HW, Gocheva V, Hunter KE, Tang LH et al. Deficiency of the macrophage growth factor CSF-1 disrupts pancreatic neuroendocrine tumor development. Oncogene 2012; 31: 1459–1467.

    CAS  PubMed  Google Scholar 

  81. Hiraoka K, Zenmyo M, Watari K, Iguchi H, Fotovati A, Kimura YN et al. Inhibition of bone and muscle metastases of lung cancer cells by a decrease in the number of monocytes/macrophages. Cancer Sci 2008; 99: 1595–1602.

    CAS  PubMed  Google Scholar 

  82. Miselis NR, Wu ZJ, Van Rooijen N, Kane AB . Targeting tumor-associated macrophages in an orthotopic murine model of diffuse malignant mesothelioma. Mol Cancer Ther 2008; 7: 788–799.

    CAS  PubMed  Google Scholar 

  83. Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjallman AH, Ballmer-Hofer K, Schwendener RA . Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 2006; 95: 272–281.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Suzuki T, Franchi L, Toma C, Ashida H, Ogawa M, Yoshikawa Y et al. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog 2007; 3: e111.

    PubMed  PubMed Central  Google Scholar 

  85. Nagai T, Tanaka M, Tsuneyoshi Y, Xu B, Michie SA, Hasui K et al. Targeting tumor-associated macrophages in an experimental glioma model with a recombinant immunotoxin to folate receptor beta. Cancer Immunol Immunother 2009; 58: 1577–1586.

    CAS  PubMed  Google Scholar 

  86. Puig-Kroger A, Sierra-Filardi E, Dominguez-Soto A, Samaniego R, Corcuera MT, Gomez-Aguado F et al. Folate receptor beta is expressed by tumor-associated macrophages and constitutes a marker for M2 anti-inflammatory/regulatory macrophages. Cancer Res 2009; 69: 9395–9403.

    PubMed  Google Scholar 

  87. Xin H, Zhang C, Herrmann A, Du Y, Figlin R, Yu H . Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res 2009; 69: 2506–2513.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Edwards JP, Emens LA . The multikinase inhibitor sorafenib reverses the suppression of IL-12 and enhancement of IL-10 by PGE(2) in murine macrophages. Int Immunopharmacol 2010; 10: 1220–1228.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hussain SF, Kong LY, Jordan J, Conrad C, Madden T, Fokt I et al. A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients. Cancer Res 2007; 67: 9630–9636.

    CAS  PubMed  Google Scholar 

  90. Fujiwara Y, Komohara Y, Ikeda T, Takeya M . Corosolic acid inhibits glioblastoma cell proliferation by suppressing the activation of signal transducer and activator of transcription-3 and nuclear factor-kappa B in tumor cells and tumor-associated macrophages. Cancer Sci 2011; 102: 206–211.

    CAS  PubMed  Google Scholar 

  91. Fujiwara Y, Komohara Y, Kudo R, Tsurushima K, Ohnishi K, Ikeda T et al. Oleanolic acid inhibits macrophage differentiation into the M2 phenotype and glioblastoma cell proliferation by suppressing the activation of STAT3. Oncol Rep 2011; 26: 1533–1537.

    CAS  PubMed  Google Scholar 

  92. Sinha P, Clements VK, Ostrand-Rosenberg S . Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J Immunol 2005; 174: 636–645.

    CAS  PubMed  Google Scholar 

  93. Pello OM, De Pizzol M, Mirolo M, Soucek L, Zammataro L, Amabile A et al. Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology. Blood 2012; 119: 411–421.

    PubMed  Google Scholar 

  94. Weisser SB, McLarren KW, Voglmaier N, van Netten-Thomas CJ, Antov A, Flavell RA et al. Alternative activation of macrophages by IL-4 requires SHIP degradation. Eur J Immunol 2011; 41: 1742–1753.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Liao X, Sharma N, Kapadia F, Zhou G, Lu Y, Hong H et al. Kruppel-like factor 4 regulates macrophage polarization. J Clin Invest 2011; 121: 2736–2749.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG et al. Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res 2010; 70: 7465–7475.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Zabuawala T, Taffany DA, Sharma SM, Merchant A, Adair B, Srinivasan R et al. An ets2-driven transcriptional program in tumor-associated macrophages promotes tumor metastasis. Cancer Res 2010; 70: 1323–1333.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen W, Ma T, Shen XN, Xia XF, Xu GD, Bai XL et al. Macrophage-induced tumor angiogenesis is regulated by the TSC2-mTOR pathway. Cancer Res 2012; 72: 1363–1372.

    CAS  PubMed  Google Scholar 

  99. Zhu Y, Yao S, Chen L . Cell surface signaling molecules in the control of immune responses: a tide model. Immunity 2011; 34: 466–478.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 2003; 9: 562–567.

    CAS  PubMed  Google Scholar 

  101. Jiang J, Zhu Y, Wu C, Shen Y, Wei W, Chen L et al. Tumor expression of B7-H4 predicts poor survival of patients suffering from gastric cancer. Cancer Immunol Immunother 2010; 59: 1707–1714.

    CAS  PubMed  Google Scholar 

  102. Kryczek I, Zou L, Rodriguez P, Zhu G, Wei S, Mottram P et al. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med 2006; 203: 871–881.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Dangaj D, Lanitis E, Zhao A, Joshi S, Cheng Y, Sandaltzopoulos R et al. Novel recombinant human b7-h4 antibodies overcome tumoral immune escape to potentiate T-cell antitumor responses. Cancer Res 2013; 73: 4820–4829.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Yao S, Zhu Y, Chen L . Advances in targeting cell surface signalling molecules for immune modulation. Nat Rev Drug Discov 2013; 12: 130–146.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Di Giacomo AM, Biagioli M, Maio M . The emerging toxicity profiles of anti-CTLA-4 antibodies across clinical indications. Semin Oncol 2010; 37: 499–507.

    CAS  PubMed  Google Scholar 

  106. Fong L, Small EJ . Anti-cytotoxic T-lymphocyte antigen-4 antibody: the first in an emerging class of immunomodulatory antibodies for cancer treatment. J Clin Oncol 2008; 26: 5275–5283.

    CAS  PubMed  Google Scholar 

  107. Ralph C, Elkord E, Burt DJ, O'Dwyer JF, Austin EB, Stern PL et al. Modulation of lymphocyte regulation for cancer therapy: a phase II trial of tremelimumab in advanced gastric and esophageal adenocarcinoma. Clin Cancer Res 2010; 16: 1662–1672.

    CAS  PubMed  Google Scholar 

  108. Chung KY, Gore I, Fong L, Venook A, Beck SB, Dorazio P et al. Phase II study of the anti-cytotoxic T-lymphocyte-associated antigen 4 monoclonal antibody, tremelimumab, in patients with refractory metastatic colorectal cancer. J Clin Oncol 2010; 28: 3485–3490.

    CAS  PubMed  Google Scholar 

  109. Mullard A . New checkpoint inhibitors ride the immunotherapy tsunami. Nat Rev Drug Discov 2013; 12: 489–492.

    CAS  PubMed  Google Scholar 

  110. Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 2012; 72: 917–927.

    CAS  PubMed  Google Scholar 

  111. Goldberg MV, Drake CG . LAG-3 in Cancer Immunotherapy. Curr Top Microbiol Immunol 2011; 344: 269–278.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Lanier LL . Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 2008; 9: 495–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC . Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 2010; 207: 2187–2194.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 2010; 207: 2175–2186.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Waickman AT, Alme A, Senaldi L, Zarek PE, Horton M, Powell JD . Enhancement of tumor immunotherapy by deletion of the A2A adenosine receptor. Cancer Immunol Immunother 2012; 61: 917–926.

    CAS  PubMed  Google Scholar 

  116. Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. New Engl J Med 2006; 355: 1018–1028.

    CAS  PubMed  Google Scholar 

  117. Kanzler H, Barrat FJ, Hessel EM, Coffman RL . Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 2007; 13: 552–559.

    CAS  PubMed  Google Scholar 

  118. Krieg AM . Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov 2006; 5: 471–484.

    CAS  PubMed  Google Scholar 

  119. Schmidt C . Clinical setbacks for toll-like receptor 9 agonists in cancer. Nat Biotechnol 2007; 25: 825–826.

    CAS  PubMed  Google Scholar 

  120. Watanabe Y, Iwa T . Clinical value of immunotherapy with the streptococcal preparation OK-432 in non-small cell lung cancer. J Biol Response Mod 1987; 6: 169–180.

    CAS  PubMed  Google Scholar 

  121. Kikkawa F, Kawai M, Oguchi H, Kojima M, Ishikawa H, Iwata M et al. Randomised study of immunotherapy with OK-432 in uterine cervical carcinoma. Eur J Cancer 1993; 29A: 1542–1546.

    CAS  PubMed  Google Scholar 

  122. Cluff CW . Monophosphoryl lipid A (MPL) as an adjuvant for anti-cancer vaccines: clinical results. Adv Exp Med Biol 2010; 667: 111–123.

    PubMed  Google Scholar 

  123. Sharma S, Zhu L, Davoodi M, Harris-White M, Lee JM St, John M et al. TLR3 agonists and proinflammatory antitumor activities. Expert Opin Ther Targets 2013; 17: 481–483.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Speiser DE, Lienard D, Rufer N, Rubio-Godoy V, Rimoldi D, Lejeune F et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J Clin Invest 2005; 115: 739–746.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Garbi N, Arnold B, Gordon S, Hammerling GJ, Ganss R . CpG motifs as proinflammatory factors render autochthonous tumors permissive for infiltration and destruction. J Immunol 2004; 172: 5861–5869.

    CAS  PubMed  Google Scholar 

  126. Nava-Parada P, Forni G, Knutson KL, Pease LR, Celis E . Peptide vaccine given with a Toll-like receptor agonist is effective for the treatment and prevention of spontaneous breast tumors. Cancer Res 2007; 67: 1326–1334.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Jarnicki AG, Conroy H, Brereton C, Donnelly G, Toomey D, Walsh K et al. Attenuating regulatory T cell induction by TLR agonists through inhibition of p38 MAPK signaling in dendritic cells enhances their efficacy as vaccine adjuvants and cancer immunotherapeutics. J Immunol 2008; 180: 3797–3806.

    CAS  PubMed  Google Scholar 

  128. Tormo D, Ferrer A, Bosch P, Gaffal E, Basner-Tschakarjan E, Wenzel J et al. Therapeutic efficacy of antigen-specific vaccination and toll-like receptor stimulation against established transplanted and autochthonous melanoma in mice. Cancer Res 2006; 66: 5427–5435.

    CAS  PubMed  Google Scholar 

  129. Pasare C, Medzhitov R . Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 2003; 299: 1033–1036.

    CAS  PubMed  Google Scholar 

  130. Peng G, Guo Z, Kiniwa Y, Voo KS, Peng W, Fu T et al. Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science 2005; 309: 1380–1384.

    CAS  PubMed  Google Scholar 

  131. Yang Y, Huang CT, Huang X, Pardoll DM . Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat Immunol 2004; 5: 508–515.

    CAS  PubMed  Google Scholar 

  132. Seya T, Shime H, Matsumoto M . TAMable tumor-associated macrophages in response to innate RNA sensing. Oncoimmunology 2012; 1: 1000–1001.

    PubMed  PubMed Central  Google Scholar 

  133. Shime H, Matsumoto M, Oshiumi H, Tanaka S, Nakane A, Iwakura Y et al. Toll-like receptor 3 signaling converts tumor-supporting myeloid cells to tumoricidal effectors. Proc Natl Acad Sci USA 2012; 109: 2066–2071.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Wilson HL, Dar A, Napper SK, Marianela Lopez A, Babiuk LA, Mutwiri GK . Immune mechanisms and therapeutic potential of CpG oligodeoxynucleotides. Int Rev Immunol 2006; 25: 183–213.

    CAS  PubMed  Google Scholar 

  135. Akdis CA, Kussebi F, Pulendran B, Akdis M, Lauener RP, Schmidt-Weber CB et al. Inhibition of T helper 2-type responses, IgE production and eosinophilia by synthetic lipopeptides. Eur J Immunol 2003; 33: 2717–2726.

    CAS  PubMed  Google Scholar 

  136. Marshall NA, Galvin KC, Corcoran AM, Boon L, Higgs R, Mills KH . Immunotherapy with PI3K inhibitor and Toll-like receptor agonist induces IFN-gamma+IL-17+ polyfunctional T cells that mediate rejection of murine tumors. Cancer Res 2012; 72: 581–591.

    CAS  PubMed  Google Scholar 

  137. Conroy H, Marshall NA, Mills KH . TLR ligand suppression or enhancement of Treg cells? A double-edged sword in immunity to tumours. Oncogene 2008; 27: 168–180.

    CAS  PubMed  Google Scholar 

  138. Conroy H, Galvin KC, Higgins SC, Mills KH . Gene silencing of TGF-beta1 enhances antitumor immunity induced with a dendritic cell vaccine by reducing tumor-associated regulatory T cells. Cancer immunol Immunother 2012; 61: 425–431.

    CAS  PubMed  Google Scholar 

  139. Walter S, Weinschenk T, Reinhardt C, Singh-Jasuja H . Single-dose cyclophosphamide synergizes with immune responses to the renal cell cancer vaccine IMA901. Oncoimmunology 2013; 2: e22246.

    PubMed  PubMed Central  Google Scholar 

  140. Ko HJ, Kim YJ, Kim YS, Chang WS, Ko SY, Chang SY et al. A combination of chemoimmunotherapies can efficiently break self-tolerance and induce antitumor immunity in a tolerogenic murine tumor model. Cancer Res 2007; 67: 7477–7486.

    CAS  PubMed  Google Scholar 

  141. Goding SR, Wilson KA, Xie Y, Harris KM, Baxi A, Akpinarli A et al. Restoring Immune Function of Tumor-Specific CD4+ T Cells during Recurrence of Melanoma. J Immunol 2013; 190: 4899–4909.

    CAS  PubMed  Google Scholar 

  142. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM et al. Nivolumab plus Ipilimumab in Advanced Melanoma. New Engl J Med 2013; 369: 122–133.

    CAS  PubMed  Google Scholar 

  143. Corsello SM, Barnabei A, Marchetti P, De Vecchis L, Salvatori R, Torino F . Endocrine side effects induced by immune checkpoint inhibitors. J Clin Endocr Metab 2013; 98: 1361–1375.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Kingston Mills’s research group is supported by grants from Science Foundation Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K H G Mills.

Ethics declarations

Competing interests

KHG Mills is a co-founder and shareholder in Opsona Therapeutics and TriMod Therapeutics. TriMod Therapeutics is involved in the development of immunotherapeutics for cancer. Aisha Q. Butt declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butt, A., Mills, K. Immunosuppressive networks and checkpoints controlling antitumor immunity and their blockade in the development of cancer immunotherapeutics and vaccines. Oncogene 33, 4623–4631 (2014). https://doi.org/10.1038/onc.2013.432

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.432

Keywords

This article is cited by

Search

Quick links