Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A reciprocal role of prostate cancer on stromal DNA damage

Abstract

DNA damage found in prostate cancer-associated fibroblasts (CAF) promotes tumor progression. In the absence of somatic mutations in CAF, epigenetic changes dictate how stromal coevolution is mediated in tumors. Seventy percent of prostate cancer patients lose expression of transforming growth factor-beta type II receptor (TGFBR2) in the stromal compartment (n=77, P-value=0.0001), similar to the rate of glutathione S-transferase P1 (GSTP1) silencing. Xenografting of human prostate cancer epithelia, LNCaP, resulted in the epigenetic Tgfbr2 silencing of host mouse prostatic fibroblasts. Stromal Tgfbr2 promoter hypermethylation, initiated by LNCaP cells, was found to be dependent on interleukin 6 expression, based on neutralizing antibody studies. We further found that pharmacologic and transgenic knockout of TGF-β responsiveness in prostatic fibroblasts induced Gstp1 promoter methylation. It is known that TGF-β promotes DNA stability, however, the mechanism is not well understood. Both prostatic human CAF and mouse transgenic knockout of Tgbr2 had elevated DNA methyltransferase I (DNMT1) activity and histone H3 lysine 9 trimethylation (H3K9me3) to suggest greater promoter methylation. Interestingly, the conditional knockout of Tgfbr2 in mouse prostatic fibroblasts, in modeling epigenetic silencing of Tgfbr2, had greater epigenetic gene silencing of multiple DNA damage repair and oxidative stress response genes, based on promoter methylation array analysis. Homologous gene silencing was validated by reverse transcriptase (RT)–PCR in mouse and human prostatic CAF. Not surprisingly, DNA damage repair gene silencing in the prostatic stromal cells corresponded with the presence of DNA damage. Restoring the expression of the epigenetically silenced genes in wild-type fibroblasts with radiation-induced DNA damage reduced tumor progression. Tumor progression was inhibited even when epigenetic silencing was reversed in the Tgfbr2-knockout prostatic fibroblasts. Taken together, fibroblastic epigenetic changes causative of DNA damage, initiated by association with cancer epithelia, is a dominant mediator of tumor progression over TGF-β responsiveness.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 2004; 303: 848–851.

    CAS  Article  PubMed  Google Scholar 

  2. Bhowmick NA, Neilson EG, Moses HL . Stromal fibroblasts in cancer initiation and progression. Nature 2004; 432: 332–337.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Nguyen DX, Bos PD, Massague J . Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 2009; 9: 274–284.

    CAS  PubMed  Google Scholar 

  4. Tuxhorn JA, Ayala GE, Smith MJ, Smith VC, Dang TD, Rowley DR . Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin Cancer Res 2002; 8: 2912–2923.

    CAS  PubMed  Google Scholar 

  5. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR . Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 1999; 59: 5002–5011.

    CAS  PubMed  Google Scholar 

  6. Cunha GR . Androgenic effects upon prostatic epithelium are mediated via trophic influences from stroma. Prog Clin Biol Res 1984; 145: 81–102.

    CAS  PubMed  Google Scholar 

  7. Placencio VR, Sharif-Afshar AR, Li X, Huang H, Uwamariya C, Neilson EG et al. Stromal transforming growth factor-beta signaling mediates prostatic response to androgen ablation by paracrine Wnt activity. Cancer Res 2008; 68: 4709–4718.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Qiu W, Hu M, Sridhar A, Opeskin K, Fox S, Shipitsin M et al. No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nat Genet 2008; 40: 650–655.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Campbell I, Polyak K, Haviv I . Clonal mutations in the cancer-associated fibroblasts: the case against genetic coevolution. Cancer Res 2009; 69: 6765–6768.

    CAS  Article  PubMed  Google Scholar 

  10. Jeronimo C, Usadel H, Henrique R, Oliveira J, Lopes C, Nelson WG et al. Quantitation of GSTP1 methylation in non-neoplastic prostatic tissue and organ-confined prostate adenocarcinoma. J Natl Cancer Inst 2001; 93: 1747–1752.

    CAS  Article  PubMed  Google Scholar 

  11. Lengauer C, Kinzler KW, Vogelstein B . Genetic instabilities in human cancers. Nature 1998; 396: 643–649.

    CAS  Article  PubMed  Google Scholar 

  12. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 2008; 6: 2853–2868.

    CAS  Article  PubMed  Google Scholar 

  13. Ohuchida K, Mizumoto K, Murakami M, Qian LW, Sato N, Nagai E et al. Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res 2004; 64: 3215–3222.

    CAS  Article  PubMed  Google Scholar 

  14. Placencio VR, Li X, Sherrill TP, Fritz G, Bhowmick NA . Bone marrow derived mesenchymal stem cells incorporate into the prostate during regrowth. PLoS One 2010; 5: e12920.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ahles TA, Saykin AJ . Candidate mechanisms for chemotherapy-induced cognitive changes. Nat Rev Cancer 2007; 7: 192–201.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Massague J . TGFbeta signalling in context. Nat Rev Mol Cell Biol 2012; 13: 616–630.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Kim SJ, Im YH, Markowitz SD, Bang YJ . Molecular mechanisms of inactivation of TGF-beta receptors during carcinogenesis. Cytokine Growth Factor Rev 2000; 11: 159–168.

    CAS  Article  PubMed  Google Scholar 

  18. Li X, Placencio V, Iturregui JM, Uwamariya C, Sharif-Afshar AR, Koyama T et al. Prostate tumor progression is mediated by a paracrine TGF-beta/Wnt3a signaling axis. Oncogene 2008; 27: 7118–7130.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Jackson RS 2nd, Placzek W, Fernandez A, Ziaee S, Chu CY, Wei J et al. Sabutoclax, a Mcl-1 antagonist, inhibits tumorigenesis in transgenic mouse and human xenograft models of prostate cancer. Neoplasia 2012; 14: 656–665.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Hodge DR, Cho E, Copeland TD, Guszczynski T, Yang E, Seth AK et al. IL-6 enhances the nuclear translocation of DNA cytosine-5-methyltransferase 1 (DNMT1) via phosphorylation of the nuclear localization sequence by the AKT kinase. Cancer genomics proteomics 2007; 4: 387–398.

    CAS  PubMed  Google Scholar 

  21. Lee SO, Lou W, Hou M, de Miguel F, Gerber L, Gao AC . Interleukin-6 promotes androgen-independent growth in LNCaP human prostate cancer cells. Clin Cancer Res 2003; 9: 370–376.

    CAS  PubMed  Google Scholar 

  22. Du Z, Song J, Wang Y, Zhao Y, Guda K, Yang S et al. DNMT1 stability is regulated by proteins coordinating deubiquitination and acetylation-driven ubiquitination. Sci Signal 2010; 3: ra80.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dakhova O, Ozen M, Creighton CJ, Li R, Ayala G, Rowley D et al. Global gene expression analysis of reactive stroma in prostate cancer. Clin Cancer Res 2009; 15: 3979–3989.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Sun Y, Campisi J, Higano C, Beer TM, Porter P, Coleman I et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med 2012; 18: 1359–1368.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Cahill DP, Kinzler KW, Vogelstein B, Lengauer C . Genetic instability and darwinian selection in tumours. Trends Cell Biol 1999; 9: M57–M60.

    CAS  Article  PubMed  Google Scholar 

  26. Fearon ER, Cho KR, Nigro JM, Kern SE, Simons JW, Ruppert JM et al. Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 1990; 247: 49–56.

    CAS  Article  PubMed  Google Scholar 

  27. Tuxhorn JA, Ayala GE, Rowley DR . Reactive stroma in prostate cancer progression. J Urol 2001; 166: 2472–2483.

    CAS  Article  PubMed  Google Scholar 

  28. Maruyama R, Choudhury S, Kowalczyk A, Bessarabova M, Beresford-Smith B, Conway T et al. Epigenetic regulation of cell type-specific expression patterns in the human mammary epithelium. PLoS Genet 2011; 7: e1001369.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J . Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA 2001; 98: 12072–12077.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Dumont N, Wilson MB, Crawford YG, Reynolds PA, Sigaroudinia M, Tlsty TD . Sustained induction of epithelial to mesenchymal transition activates DNA methylation of genes silenced in basal-like breast cancers. Proc Natl Acad Sci USA 2008; 105: 14867–14872.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Kantarjian H, Giles F, List A, Lyons R, Sekeres MA, Pierce S et al. The incidence and impact of thrombocytopenia in myelodysplastic syndromes. Cancer 2007; 109: 1705–1714.

    CAS  Article  PubMed  Google Scholar 

  32. Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, DiPersio J et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 2006; 106: 1794–1803.

    CAS  Article  PubMed  Google Scholar 

  33. Shen H, Laird PW . In epigenetic therapy, less is more. Cell Stem Cell 2012; 10: 353–354.

    CAS  Article  PubMed  Google Scholar 

  34. Trobridge P, Knoblaugh S, Washington MK, Munoz NM, Tsuchiya KD, Rojas A et al. TGF-beta receptor inactivation and mutant Kras induce intestinal neoplasms in mice via a beta-catenin-independent pathway. Gastroenterology 2009; 136: 1680–1688 e7.

    CAS  Article  PubMed  Google Scholar 

  35. Grady WM, Willis J, Guilford PJ, Dunbier AK, Toro TT, Lynch H et al. Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat Genet 2000; 26: 16–17.

    CAS  Article  PubMed  Google Scholar 

  36. Martinez-Ferrer M, Afshar-Sherif AR, Uwamariya C, de Crombrugghe B, Davidson JM, Bhowmick NA . Dermal transforming growth factor-beta responsiveness mediates wound contraction and epithelial closure. Am J Pathol 2010; 176: 98–107.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Li X, Martinez-Ferrer M, Botta V, Uwamariya C, Banerjee J, Bhowmick NA . Epithelial Hic-5/ARA55 expression contributes to prostate tumorigenesis and castrate responsiveness. Oncogene 2010; 30: 167–177.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kiskowski MA, Jackson RS 2nd, Banerjee J, Li X, Kang M, Iturregui JM et al. Role for stromal heterogeneity in prostate tumorigenesis. Cancer Res 2011; 71: 3459–3470.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 2005; 37: 853–862.

    CAS  Article  PubMed  Google Scholar 

  40. Oliveros JC . 2007. http://www.bioinfogp.cnb.csic.es/tools/venny/index.html.

Download references

Acknowledgements

The work was supported by R01CA108646 (to NAB) from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N A Bhowmick.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Banerjee, J., Mishra, R., Li, X. et al. A reciprocal role of prostate cancer on stromal DNA damage. Oncogene 33, 4924–4931 (2014). https://doi.org/10.1038/onc.2013.431

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.431

Keywords

  • stromal coevolution
  • prostate cancer
  • TGF-beta
  • IL-6
  • DNA methylation

Further reading

Search

Quick links