Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The MYB proto-oncogene suppresses monocytic differentiation of acute myeloid leukemia cells via transcriptional activation of its target gene GFI1

Abstract

The MYB gene is a master regulator of hematopoiesis and contributes to leukemogenesis in several species including humans. Although it is clear that MYB can promote proliferation, suppress apoptosis and block differentiation, the identities of the MYB target genes that mediate these effects have only been partially elucidated. Several studies, including our own, have collectively identified substantial numbers of MYB target genes, including candidates for each of these activities; however, functional validation, particularly in the case of differentiation suppression, has lagged well behind. Here we show that GFI1, which encodes an important regulator of hematopoietic stem cell (HSC) function and granulocytic differentiation, is a direct target of MYB in myeloid leukemia cells. Chromatin immunoprecipitation and reporter studies identified a functional MYB-binding site in the promoter region of GFI, whereas ectopic expression and small hairpin RNA-mediated knockdown of MYB resulted in concomitant increases and decreases, respectively, in GFI1 expression. We also demonstrate that GFI1, like MYB, can block the induced monocytic differentiation of a human acute myeloid leukemia cell line, and most importantly, that GFI1 is essential for MYB’s ability to block monocytic differentiation. Thus, we have identified a target of MYB that is a likely mediator of its myeloid differentiation-blocking activity, and which may also be involved in MYB’s activities in regulating normal HSC function and myeloid differentiation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Radke K, Beug H, Kornfeld S, Graf T . Transformation of both erythroid and myeloid cells by E26, an avian leukemia virus that contains the myb gene. Cell 1982; 31: 643–653.

    Article  CAS  Google Scholar 

  2. Moscovici C, Samarut J, Gazzolo L, Moscovici MG . Myeloid and erythroid neoplastic responses to avian defective leukemia viruses in chickens and in quail. Virology 1981; 113: 765–768.

    Article  CAS  Google Scholar 

  3. Pattabiraman DR, Gonda TJ . Role and potential for therapeutic targeting of MYB in leukemia. Leukemia 2013; 27: 269–277.

    Article  CAS  Google Scholar 

  4. Ramsay RG, Gonda TJ . MYB function in normal and cancer cells. Nat Rev Cancer 2008; 8: 523–534.

    Article  CAS  Google Scholar 

  5. Shen-Ong GL, Potter M, Mushinski JF, Lavu S, Reddy EP . Activation of the c-myb locus by viral insertional mutagenesis in plasmacytoid lymphosarcomas. Science 1984; 226: 1077–1080.

    Article  CAS  Google Scholar 

  6. Wolff L, Koller R, Bies J, Nazarov V, Hoffman B, Amanullah A et al. Retroviral insertional mutagenesis in murine promonocytic leukemias: c-myb and Mml1. Curr Top Microbiol Immunol 1996; 211: 191–199.

    CAS  PubMed  Google Scholar 

  7. Li J, Shen H, Himmel KL, Dupuy AJ, Largaespada DA, Nakamura T et al. Leukaemia disease genes: large-scale cloning and pathway predictions. Nat Genet 1999; 23: 348–353.

    Article  CAS  Google Scholar 

  8. Lahortiga I, De Keersmaecker K, Van Vlierberghe P, Graux C, Cauwelier B, Lambert F et al. Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nat Genet 2007; 39: 593–595.

    Article  CAS  Google Scholar 

  9. Clappier E, Cuccuini W, Kalota A, Crinquette A, Cayuela J-M, Dik WA et al. The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. Blood 2007; 110: 1251–1261.

    Article  CAS  Google Scholar 

  10. O'Neil J, Tchinda J, Gutierrez A, Moreau L, Maser RS, Wong KK et al. Alu elements mediate MYB gene tandem duplication in human T-ALL. J Exp Med 2007; 204: 3059–3066.

    Article  CAS  Google Scholar 

  11. Murati A, Gervais C, Carbuccia N, Finetti P, Cervera N, Adelaide J et al. Genome profiling of acute myelomonocytic leukemia: alteration of the MYB locus in MYST3-linked cases. Leukemia 2009; 23: 85–94.

    Article  CAS  Google Scholar 

  12. Castaneda VL, Parmley RT, Saldivar VA, Cheah MS . Childhood undifferentiated leukemia with early erythroid markers and c-myb duplication. Leukemia 1991; 5: 142–149.

    CAS  PubMed  Google Scholar 

  13. Quelen C, Lippert E, Struski S, Demur C, Soler G, Prade N et al. Identification of a transforming MYB-GATA1 fusion gene in acute basophilic leukemia: a new entity in male infants. Blood 2011; 117: 5719–5722.

    Article  CAS  Google Scholar 

  14. Belloni E, Shing D, Tapinassi C, Viale A, Mancuso P, Malazzi O et al. In vivo expression of an aberrant MYB-GATA1 fusion induces leukemia in the presence of GATA1 reduced levels. Leukemia 2011; 25: 733–736.

    Article  CAS  Google Scholar 

  15. Westin EH, Gallo RC, Arya SK, Eva A, Souza LM, Baluda MA et al. Differential expression of the amv gene in human hematopoietic cells. Proc Natl Acad Sci USA 1982; 79: 2194–2198.

    Article  CAS  Google Scholar 

  16. Oh IH, Reddy EP . The myb gene family in cell growth, differentiation and apoptosis. Oncogene 1999; 18: 3017–3033.

    Article  CAS  Google Scholar 

  17. Zhao L, Glazov EA, Pattabiraman DR, Al-Owaidi F, Zhang P, Brown MA et al. Integrated genome-wide chromatin occupancy and expression analyses identify key myeloid pro-differentiation transcription factors repressed by Myb. Nucleic Acids Res 2011; 39: 4664–4679.

    Article  CAS  Google Scholar 

  18. Wolff L, Schmidt M, Koller R, Haviernik P, Watson R, Bies J et al. Three genes with different functions in transformation are regulated by c-Myb in myeloid cells. Blood Cells Mol Dis 2001; 27: 483–488.

    Article  CAS  Google Scholar 

  19. Nakata Y, Shetzline S, Sakashita C, Kalota A, Rallapalli R, Rudnick SI et al. c-Myb contributes to G2/M cell cycle transition in human hematopoietic cells by direct regulation of cyclin B1 expression. Mol Cell Biol 2007; 27: 2048–2058.

    Article  CAS  Google Scholar 

  20. Ye P, Zhao L, Gonda TJ . The MYB oncogene can suppress apoptosis in acute myeloid leukemia cells by transcriptional repression of DRAK2 expression. Leuk Res 2013; 37: 595–601.

    Article  CAS  Google Scholar 

  21. Frampton J, Ramqvist T, Graf T . v-Myb of E26 leukemia virus up-regulates bcl-2 and suppresses apoptosis in myeloid cells. Genes Dev 1996; 10: 2720–2731.

    Article  CAS  Google Scholar 

  22. Selvakumaran M, Liebermann DA, Hoffman-Liebermann B . Deregulated c-myb disrupts interleukin-6- or leukemia inhibitory factor-induced myeloid differentiation prior to c-myc: role in leukemogenesis. Mol Cell Biol 1992; 12: 2493–2500.

    Article  CAS  Google Scholar 

  23. Clarke MF, Kukowska-Latallo JF, Westin E, Smith M, Prochownik EV . Constitutive expression of a c-myb cDNA blocks Friend murine erythroleukemia cell differentiation. Mol Cell Biol 1988; 8: 884–892.

    Article  CAS  Google Scholar 

  24. Knopfova L, Smarda J . v-Myb suppresses phorbol ester- and modifies retinoic acid-induced differentiation of human promonocytic U937 cells. Neoplasma 2008; 55: 286–293.

    CAS  PubMed  Google Scholar 

  25. The FANTOM Consortium, the Riken Omics Science Center., The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet 2009; 41: 553–562.

    Article  Google Scholar 

  26. Gonda TJ, Buckmaster C, Ramsay RG . Activation of c-myb by carboxy-terminal truncation: relationship to transformation of murine haemopoietic cells in vitro. EMBO J 1989; 8: 1777–1783.

    Article  CAS  Google Scholar 

  27. Fu S, Lipsick J . Constitutive expression of full-length c-Myb transforms avian cells characteristic of both the monocytic and granulocytic lineages. Cell Growth Differ 1997; 8: 35–45.

    CAS  PubMed  Google Scholar 

  28. Grimes HL, Chan TO, Zweidler-McKay PA, Tong B, Tsichlis PN . The Gfi-1 proto-oncoprotein contains a novel transcriptional repressor domain, SNAG, and inhibits G1 arrest induced by interleukin-2 withdrawal. Mol Cell Biol 1996; 16: 6263–6272.

    Article  CAS  Google Scholar 

  29. van der Meer LT, Jansen JH, van der Reijden BA . Gfi1 and Gfi1b: key regulators of hematopoiesis. Leukemia 2010; 24: 1834–1843.

    Article  CAS  Google Scholar 

  30. Hock H, Hamblen MJ, Rooke HM, Schindler JW, Saleque S, Fujiwara Y et al. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature 2004; 431: 1002–1007.

    Article  CAS  Google Scholar 

  31. Zeng H, Yucel R, Kosan C, Klein-Hitpass L, Moroy T . Transcription factor Gfi1 regulates self-renewal and engraftment of hematopoietic stem cells. Embo J 2004; 23: 4116–4125.

    Article  CAS  Google Scholar 

  32. Karsunky H, Zeng H, Schmidt T, Zevnik B, Kluge R, Schmid KW et al. Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi1. Nat Genet 2002; 30: 295–300.

    Article  Google Scholar 

  33. Hock H, Hamblen MJ, Rooke HM, Traver D, Bronson RT, Cameron S et al. Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity 2003; 18: 109–120.

    Article  CAS  Google Scholar 

  34. Person RE, Li F-Q, Duan Z, Benson KF, Wechsler J, Papadaki HA et al. Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat Genet 2003; 34: 308–312.

    Article  CAS  Google Scholar 

  35. Dahl R, Iyer SR, Owens KS, Cuylear DD, Simon MC . The transcriptional repressor GFI-1 antagonizes PU.1 activity through protein-protein interaction. J Biol Chem 2007; 282: 6473–6483.

    Article  CAS  Google Scholar 

  36. Hogg A, Schirm S, Nakagoshi H, Bartley P, Ishii S, Bishop JM et al. Inactivation of a c-Myb/estrogen receptor fusion protein in transformed primary cells leads to granulocyte/macrophage differentiation and down regulation of c-kit but not c-myc or cdc2. Oncogene 1997; 15: 2885–2898.

    Article  CAS  Google Scholar 

  37. Brown CY, Sadlon T, Gargett T, Melville E, Zhang R, Drabsch Y et al. Robust, reversible geneknockdown using a single lentiviral short hairpin RNA vector. Hum Gene Ther 2010; 21: 1005–1017.

    Article  CAS  Google Scholar 

  38. Drabsch Y, Hugo H, Zhang R, Dowhan DH, Miao YR, Gewirtz AM et al. Mechanism of and requirement for estrogen- regulated MYB expression in estrogen-receptor-positive breast cancer cells. Proc Natl Acad Sci USA 2007. 0700104104.

  39. Zarebski A, Velu CS, Baktula AM, Bourdeau T, Horman SR, Basu S et al. Mutations in growth factor independent-1 Associated with human neutropenia block murine granulopoiesis through colony stimulating factor-1. Immunity 2008; 28: 370–380.

    Article  CAS  Google Scholar 

  40. Phelan JD, Shroyer NF, Cook T, Gebelein B, Grimes HL . Gfi1-cells and circuits: unraveling transcriptional networks of development and disease. Curr Opin Hematol 2010; 17: 300–307.

    Article  CAS  Google Scholar 

  41. Dreyling MH, Martinez-Climent JA, Zheng M, Mao J, Rowley JD, Bohlander SK . The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family. Proc Natl Acad Sci USA 1996; 93: 4804–4809.

    Article  CAS  Google Scholar 

  42. Adati N, Huang MC, Suzuki T, Suzuki H, Kojima T . High-resolution analysis of aberrant regions in autosomal chromosomes in human leukemia THP-1 cell line. BMC Res Notes 2009; 2: 153.

    Article  Google Scholar 

  43. Huang M, Hu Z, Chang W, Ou D, Zhou J, Zhang Y . The growth factor independence-1 (Gfi1) is overexpressed in chronic myelogenous leukemia. Acta Haematol 2010; 123: 1–5.

    Article  CAS  Google Scholar 

  44. Zhan R, Wu SQ, Huang HB, Huang SL, Lin J . Gfi-1 expression in leukemia patients and inhibitory effects of lentiviral vector mediated silence of Gfi-1 gene on proliferation in K562 cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2010; 18: 849–854.

    CAS  PubMed  Google Scholar 

  45. Wang TT, Chen ZX, Cen JN, He J, Sheng HJ, Yao L . Expression of growth-factor independence 1 in patients with leukemia and its significance. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2010; 18: 834–837.

    CAS  PubMed  Google Scholar 

  46. Bonadies N, Foster SD, Chan WI, Kvinlaug BT, Spensberger D, Dawson MA et al. Genome-wide analysis of transcriptional reprogramming in mouse models of acute myeloid leukaemia. PLoS One 2011; 6: e16330.

    Article  CAS  Google Scholar 

  47. Lidonnici MR, Audia A, Soliera AR, Prisco M, Ferrari-Amorotti G, Waldron T et al. Expression of the transcriptional repressor Gfi-1 Is regulated by C/EBPα and is involved in its proliferation and colony formation–inhibitory effects in p210BCR/ABL-expressing cells. Cancer Res 2010; 70: 7949–7959.

    Article  CAS  Google Scholar 

  48. Horman SR, Velu CS, Chaubey A, Bourdeau T, Zhu J, Paul WE et al. Gfi1 integrates progenitor versus granulocytic transcriptional programming. Blood 2009; 113: 5466–5475.

    Article  CAS  Google Scholar 

  49. Zörnig M, Schmidt T, Karsunky H, Grzeschiczek A, Möröy T . Zinc finger protein GFI-1 cooperates with MYC and PIM-1 in T-Cell lymphomagenesis by reducing the requirements for IL-2. Oncogene 1996; 12: 1789–1801.

    PubMed  Google Scholar 

  50. Schmidt T, Karsunky H, Gau E, Zevnik B, Elsässer HP, Möröy T . Zinc finger protein GFI-1 has low oncogenic potential but cooperates strongly with pim and myc genes in T-cell lymphomagenesis. Oncogene 1998; 17: 2661–2667.

    Article  CAS  Google Scholar 

  51. Khandanpour C, Phelan James D, Vassen L, Schütte J, Chen R, Horman Shane R et al. Growth factor independence 1 antagonizes a p53-induced dna damage response pathway in lymphoblastic leukemia. Cancer Cell 2013; 23: 200–214.

    Article  CAS  Google Scholar 

  52. Wei W, Wen L, Huang P, Zhang Z, Chen Y, Xiao A et al. Gfi1.1 regulates hematopoietic lineage differentiation during zebrafish embryogenesis. Cell Res 2008; 18: 677–685.

    Article  CAS  Google Scholar 

  53. Vassen L, Duhrsen U, Kosan C, Zeng H, Moroy T . Growth factor independence 1 (Gfi1) regulates cell-fate decision of a bipotential granulocytic-monocytic precursor defined by expression of Gfi1 and CD48. Am J Blood Res 2012; 2: 228–242.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ramsay RG, Ciznadija D, Mantamadiotis T, Anderson R, Pearson R . Expression of stress response protein glucose regulated protein-78 mediated by c-Myb. Int J Biochem Cell Biol 2005; 37: 1254–1268.

    Article  CAS  Google Scholar 

  55. Bert AG, Burrows J, Osborne CS, Cockerill PN . Generation of an improved luciferase reporter gene plasmid that employs a novel mechanism for high-copy replication. Plasmid 2000; 44: 173–182.

    Article  CAS  Google Scholar 

  56. Škalamera D, Ranall MV, Wilson BM, Leo P, Purdon AS, Hyde C et al. A high-throughput platform for lentiviral overexpression screening of the human ORFeome. PLoS One 2011; 6: e20057.

    Article  Google Scholar 

  57. Barry SC, Harder B, Brzezinski M, Flint LY, Seppen J, Osborne WR . Lentivirus vectors encoding both central polypurine tract and posttranscriptional regulatory element provide enhanced transduction and transgene expression. Hum Gene Ther 2001; 12: 1103–1108.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the National Health and Medical Research Council of Australia (to TJG) and a University of Queensland Postdoctoral Fellowship (to PY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T J Gonda.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhao, L., Ye, P. & Gonda, T. The MYB proto-oncogene suppresses monocytic differentiation of acute myeloid leukemia cells via transcriptional activation of its target gene GFI1. Oncogene 33, 4442–4449 (2014). https://doi.org/10.1038/onc.2013.419

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.419

Keywords

  • U937
  • MYB
  • GFI1
  • monocytic differentiation
  • target gene

This article is cited by

Search

Quick links