Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HAI-2 suppresses the invasive growth and metastasis of prostate cancer through regulation of matriptase

Abstract

Dysregulation of cell surface proteolysis has been strongly implicated in tumorigenicity and metastasis. In this study, we delineated the role of hepatocyte growth factor activator inhibitor-2 (HAI-2) in prostate cancer (PCa) cell migration, invasion, tumorigenicity and metastasis using a human PCa progression model (103E, N1, and N2 cells) and xenograft models. N1 and N2 cells were established through serial intraprostatic propagation of 103E human PCa cells and isolation of the metastatic cells from nearby lymph nodes. The invasion capability of these cells was revealed to gradually increase throughout the serial isolations (103E<N1<N2). In this series of cells, the expression of HAI-2 but not HAI-1 was significantly decreased throughout the progression and occurred in parallel with increased activation of matriptase. The expression level and activity of matriptase increased whereas the HAI-2 protein level decreased over the course of orthotopic tumor growth in mice, which was consistent with the immunohistochemical profiles of matriptase and HAI-2 in archival PCa specimens. Knockdown of matriptase reduced the PCa cell invasion induced by HAI-2 knockdown. HAI-2 overexpression or matriptase silencing in N2 cells downregulated matriptase activity and significantly decreased tumorigenicity and metastatic capability in orthotopically xenografted mice. These results suggest that during the progression of human PCa, matriptase activity is primarily controlled by HAI-2 expression. The imbalance between HAI-2 and matriptase expression led to matriptase activation, thereby increasing cell migration, invasion, tumorigenicity and metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Weiss L . Metastasis of cancer: a conceptual history from antiquity to the 1990s. Cancer Metastasis Rev 2000; 19: I–XI 193–383.

    Article  Google Scholar 

  2. Fidler IJ . The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 2003; 3: 453–458.

    Article  CAS  Google Scholar 

  3. Liotta LA, Kohn EC . The microenvironment of the tumour-host interface. Nature 2001; 411: 375–379.

    Article  CAS  Google Scholar 

  4. Antalis TM, Buzza MS, Hodge KM, Hooper JD, Netzel-Arnett S . The cutting edge: membrane-anchored serine protease activities in the pericellular microenvironment. Biochem J 2010; 428: 325–346.

    Article  CAS  Google Scholar 

  5. Netzel-Arnett S, Hooper JD, Szabo R, Madison EL, Quigley JP, Bugge TH et al. Membrane anchored serine proteases: a rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer. Cancer Metastasis Rev 2003; 22: 237–258.

    Article  CAS  Google Scholar 

  6. Egeblad M, Werb Z . New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2: 161–174.

    Article  CAS  Google Scholar 

  7. Shi YE, Torri J, Yieh L, Wellstein A, Lippman ME, Dickson RB . Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells. Cancer Res 1993; 53: 1409–1415.

    CAS  PubMed  Google Scholar 

  8. Lin CY, Anders J, Johnson M, Sang QA, Dickson RB . Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity. J Biol Chem 1999; 274: 18231–18236.

    Article  CAS  Google Scholar 

  9. Oberst M, Anders J, Xie B, Singh B, Ossandon M, Johnson M et al. Matriptase and HAI-1 are expressed by normal and malignant epithelial cells in vitro and in vivo. Am J Pathol 2001; 158: 1301–1311.

    Article  CAS  Google Scholar 

  10. Lee MS, Kiyomiya K, Benaud C, Dickson RB, Lin CY . Simultaneous activation and hepatocyte growth factor activator inhibitor 1-mediated inhibition of matriptase induced at activation foci in human mammary epithelial cells. Am J Physiol Cell Physiol 2005; 288: C932–C941.

    Article  CAS  Google Scholar 

  11. Lin CY, Anders J, Johnson M, Dickson RB . Purification and characterization of a complex containing matriptase and a Kunitz-type serine protease inhibitor from human milk. J Biol Chem 1999; 274: 18237–18242.

    Article  CAS  Google Scholar 

  12. Szabo R, Molinolo A, List K, Bugge TH . Matriptase inhibition by hepatocyte growth factor activator inhibitor-1 is essential for placental development. Oncogene 2007; 26: 1546–1556.

    Article  CAS  Google Scholar 

  13. Kang JY, Dolled-Filhart M, Ocal IT, Singh B, Lin CY, Dickson RB et al. Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Res 2003; 63: 1101–1105.

    CAS  PubMed  Google Scholar 

  14. Saleem M, Adhami VM, Zhong W, Longley BJ, Lin CY, Dickson RB et al. A novel biomarker for staging human prostate adenocarcinoma: overexpression of matriptase with concomitant loss of its inhibitor, hepatocyte growth factor activator inhibitor-1. Cancer Epidemiol Biomarkers Prev 2006; 15: 217–227.

    Article  CAS  Google Scholar 

  15. Wu SR, Cheng TS, Chen WC, Shyu HY, Ko CJ, Huang HP et al. Matriptase is involved in ErbB-2-induced prostate cancer cell invasion. Am J Pathol 2010; 177: 3145–3158.

    Article  CAS  Google Scholar 

  16. List K, Szabo R, Molinolo A, Sriuranpong V, Redeye V, Murdock T et al. Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. Genes Dev 2005; 19: 1934–1950.

    Article  CAS  Google Scholar 

  17. Lin CY, Tseng IC, Chou FP, Su SF, Chen YW, Johnson MD et al. Zymogen activation, inhibition, and ectodomain shedding of matriptase. Front Biosci 2008; 13: 621–635.

    Article  CAS  Google Scholar 

  18. Lee MS . Matrix-degrading type II transmembrane serine protease matriptase: its role in cancer development and malignancy. J Cancer Molecules 2006; 2: 183–190.

    CAS  Google Scholar 

  19. Lee SL, Dickson RB, Lin CY . Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem 2000; 275: 36720–36725.

    Article  CAS  Google Scholar 

  20. Takeuchi T, Harris JL, Huang W, Yan KW, Coughlin SR, Craik CS . Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J Biol Chem 2000; 275: 26333–26342.

    Article  CAS  Google Scholar 

  21. Jin X, Yagi M, Akiyama N, Hirosaki T, Higashi S, Lin CY et al. Matriptase activates stromelysin (MMP-3) and promotes tumor growth and angiogenesis. Cancer Sci 2006; 97: 1327–1334.

    Article  CAS  Google Scholar 

  22. Satomi S, Yamasaki Y, Tsuzuki S, Hitomi Y, Iwanaga T, Fushiki T . A role for membrane-type serine protease (MT-SP1) in intestinal epithelial turnover. Biochem Biophys Res Commun 2001; 287: 995–1002.

    Article  CAS  Google Scholar 

  23. Kawaguchi T, Qin L, Shimomura T, Kondo J, Matsumoto K, Denda K et al. Purification and cloning of hepatocyte growth factor activator inhibitor type 2, a Kunitz-type serine protease inhibitor. J Biol Chem 1997; 272: 27558–27564.

    Article  CAS  Google Scholar 

  24. Marlor CW, Delaria KA, Davis G, Muller DK, Greve JM, Tamburini PP . Identification and cloning of human placental bikunin, a novel serine protease inhibitor containing two Kunitz domains. J Biol Chem 1997; 272: 12202–12208.

    Article  CAS  Google Scholar 

  25. Szabo R, Hobson JP, List K, Molinolo A, Lin CY, Bugge TH . Potent inhibition and global co-localization implicate the transmembrane Kunitz-type serine protease inhibitor hepatocyte growth factor activator inhibitor-2 in the regulation of epithelial matriptase activity. J Biol Chem 2008; 283: 29495–29504.

    Article  CAS  Google Scholar 

  26. Heinz-Erian P, Muller T, Krabichler B, Schranz M, Becker C, Ruschendorf F et al. Mutations in SPINT2 cause a syndromic form of congenital sodium diarrhea. Am J Hum Genet 2009; 84: 188–196.

    Article  CAS  Google Scholar 

  27. Huang HP, Chang MH, Chen YT, Hsu HY, Chiang CL, Cheng TS et al. Persistent elevation of hepatocyte growth factor activator inhibitors in cholangiopathies affects liver fibrosis and differentiation. Hepatology 2012; 55: 161–172.

    Article  CAS  Google Scholar 

  28. Szabo R, Hobson JP, Christoph K, Kosa P, List K, Bugge TH . Regulation of cell surface protease matriptase by HAI2 is essential for placental development, neural tube closure and embryonic survival in mice. Development 2009; 136: 2653–2663.

    Article  CAS  Google Scholar 

  29. Parr C, Watkins G, Mansel RE, Jiang WG . The hepatocyte growth factor regulatory factors in human breast cancer. Clin Cancer Res 2004; 10: 202–211.

    Article  CAS  Google Scholar 

  30. Bergum C, List K . Loss of the matriptase inhibitor HAI-2 during prostate cancer progression. Prostate 2010; 70: 1422–1428.

    Article  CAS  Google Scholar 

  31. Muller-Pillasch F, Wallrapp C, Bartels K, Varga G, Friess H, Buchler M et al. Cloning of a new Kunitz-type protease inhibitor with a putative transmembrane domain overexpressed in pancreatic cancer. Biochim Biophys Acta 1998; 1395: 88–95.

    Article  CAS  Google Scholar 

  32. Kongkham PN, Northcott PA, Ra YS, Nakahara Y, Mainprize TG, Croul SE et al. An epigenetic genome-wide screen identifies SPINT2 as a novel tumor suppressor gene in pediatric medulloblastoma. Cancer Res 2008; 68: 9945–9953.

    Article  CAS  Google Scholar 

  33. Morris MR, Gentle D, Abdulrahman M, Maina EN, Gupta K, Banks RE et al. Tumor suppressor activity and epigenetic inactivation of hepatocyte growth factor activator inhibitor type 2/SPINT2 in papillary and clear cell renal cell carcinoma. Cancer Res 2005; 65: 4598–4606.

    Article  CAS  Google Scholar 

  34. Fukai K, Yokosuka O, Chiba T, Hirasawa Y, Tada M, Imazeki F et al. Hepatocyte growth factor activator inhibitor 2/placental bikunin (HAI-2/PB) gene is frequently hypermethylated in human hepatocellular carcinoma. Cancer Res 2003; 63: 8674–8679.

    CAS  PubMed  Google Scholar 

  35. Parr C, Jiang WG . Hepatocyte growth factor activation inhibitors (HAI-1 and HAI-2) regulate HGF-induced invasion of human breast cancer cells. Int J Cancer 2006; 119: 1176–1183.

    Article  CAS  Google Scholar 

  36. Kirchhofer D, Peek M, Lipari MT, Billeci K, Fan B, Moran P . Hepsin activates pro-hepatocyte growth factor and is inhibited by hepatocyte growth factor activator inhibitor-1B (HAI-1B) and HAI-2. FEBS Lett 2005; 579: 1945–1950.

    Article  CAS  Google Scholar 

  37. Tsai CH, Lin FM, Yang YC, Lee MT, Cha TL, Wu GJ et al. Herbal extract of Wedelia chinensis attenuates androgen receptor activity and orthotopic growth of prostate cancer in nude mice. Clin Cancer Res 2009; 15: 5435–5444.

    Article  CAS  Google Scholar 

  38. Chen CJ, Wu BY, Tsao PI, Chen CY, Wu MH, Chan YL et al. Increased matriptase zymogen activation in inflammatory skin disorders. Am J Physiol Cell Physiol 2011; 300: C406–C415.

    Article  CAS  Google Scholar 

  39. Oberst MD, Singh B, Ozdemirli M, Dickson RB, Johnson MD, Lin CY . Characterization of matriptase expression in normal human tissues. J Histochem Cytochem 2003; 51: 1017–1025.

    Article  CAS  Google Scholar 

  40. List K, Bugge TH, Szabo R . Matriptase: potent proteolysis on the cell surface. Mol Med 2006; 12: 1–7.

    Article  CAS  Google Scholar 

  41. Uhland K . Matriptase and its putative role in cancer. Cell Mol Life Sci 2006; 63: 2968–2978.

    Article  CAS  Google Scholar 

  42. Cheng TS, Chen WC, Lin YY, Tsai CH, Liao CI, Shyu HY et al. Curcumin-targeting pericellular serine protease matriptase role in suppression of prostate cancer cell invasion, tumor growth, and metastasis. Cancer Prev Res 2013; 6: 495–505.

    Article  CAS  Google Scholar 

  43. Lee MS, Tseng IC, Wang Y, Kiyomiya K, Johnson MD, Dickson RB et al. Autoactivation of matriptase in vitro: requirement for biomembrane and LDL receptor domain. Am J Physiol Cell Physiol 2007; 293: C95–105.

    Article  CAS  Google Scholar 

  44. Szabo R, Rasmussen AL, Moyer AB, Kosa P, Schafer JM, Molinolo AA et al. c-Met-induced epithelial carcinogenesis is initiated by the serine protease matriptase. Oncogene 2011; 30: 2003–2016.

    Article  CAS  Google Scholar 

  45. Nagakawa O, Yamagishi T, Fujiuchi Y, Junicho A, Akashi T, Nagaike K et al. Serum hepatocyte growth factor activator (HGFA) in benign prostatic hyperplasia and prostate cancer. Eur Urol 2005; 48: 686–690.

    Article  CAS  Google Scholar 

  46. Oberst MD, Williams CA, Dickson RB, Johnson MD, Lin CY . The activation of matriptase requires its noncatalytic domains, serine protease domain, and its cognate inhibitor. J Biol Chem 2003; 278: 26773–26779.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Taiwan National Health Research Institutes Grants NHRI-EX101-9909BC and NHRI-EX102-9909BC, Taiwan National Science Council Grants NSC 97-2320-B-002-052-MY3, NSC 100-2628-B-002-004-MY4 and NSC 101-2324-B-002-015, the Frontier and Innovative Research Grant of National Taiwan University 98R0305 and National Taiwan University Cutting-Edge Steering Research Project 10R71602C4 to M-S Lee; Postdoctoral Fellowship from the Aim for Top University Program, National Taiwan University, to T-S Cheng; and grants from the National Science Council, Taiwan (NSC 98-2320-B-001-018-MY3), financial and instrumental support from the Agricultural Biotechnology Research Center and Academia Sinica awarded to P-W Hsiao. We are also grateful to Miranda Loney (Editor, ABRC) for critical suggestions editing this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P-W Hsiao or M-S Lee.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, CH., Teng, CH., Tu, YT. et al. HAI-2 suppresses the invasive growth and metastasis of prostate cancer through regulation of matriptase. Oncogene 33, 4643–4652 (2014). https://doi.org/10.1038/onc.2013.412

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.412

Keywords

This article is cited by

Search

Quick links