Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HRG-1 enhances cancer cell invasive potential and couples glucose metabolism to cytosolic/extracellular pH gradient regulation by the vacuolar-H+ ATPase

Abstract

Haeme-responsive gene (HRG)-1 encodes a 16-kDa transmembrane protein that is induced by insulin-like growth factor-1 (IGF-1) and associates with the vacuolar-(H+) ATPase (V-ATPase). We previously reported that HRG-1 is essential for V-ATPase activity in endosomal acidification and receptor trafficking. Here, we show that in highly invasive and migratory cancer cell lines, HRG-1 and the V-ATPase are co-expressed at the plasma membrane, whereas in less invasive cell lines and non-transformed cells HRG-1 over-expression remains confined to intracellular compartments. Stable suppression of HRG-1 in invasive breast cancer MDA-MB-231 cells decreases extracellular pH, cell growth, migration and invasion. Ectopic expression of HRG-1 in non-invasive MCF-7 cells enhances V-ATPase activity, lowers the extracellular pH and increases the pH-dependent activity of MMP2 and MMP9 matrix metalloproteinases. HRG-1 enhances trafficking of the glucose transporter-1 (GLUT-1) with a concomitant increase in glucose uptake and lactate production. HRG-1 also promotes trafficking of the insulin-like growth factor I receptor (IGF-1R), β1-integrin and IGF-1 signalling. Taken together, our findings indicate that HRG-1 expression at the plasma membrane enhances V-ATPase activity, drives glycolytic flux and facilitates cancer cell growth, migration and invasion. Thus, HRG-1 may represent a novel target for selectively disrupting V-ATPase activity and the metastatic potential of cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Webb BA, Chimenti M, Jacobson MP, Barber DL . Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer 2011; 11: 671–677.

    Article  CAS  Google Scholar 

  2. Cardone Ra Casavola V, Reshkin SJ . The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 2005; 5: 786–795.

    Article  Google Scholar 

  3. Swietach P, Hulikova A, Vaughan-Jones R, Harris A . New insights into the physiological role of carbonic anhydrase IX in tumour pH regulation. Oncogene 2010; 29: 6509–6521.

    Article  CAS  Google Scholar 

  4. Chiche J, Fur YL, Vilmen C, Frassineti F, Daniel L, Halestrap AP et al. In vivo pH in metabolic‐defective Ras‐transformed fibroblast tumors: Key role of the monocarboxylate transporter MCT4, for inducing an alkaline intracellular pH. Int J Cancer 2011; 130: 1511–1520.

    Article  Google Scholar 

  5. Hernandez A, Serrano-Bueno G, Perez-Castineira RJ, Serrano A . Intracellular proton pumps as targets in chemotherapy: V-ATPases and cancer. Curr Pharm Des 2012; 18: 1383–1394.

    Article  CAS  Google Scholar 

  6. Toei M, Saum R, Forgac M . Regulation and isoform function of the V-ATPases. Biochemistry 2010; 49: 4715–4723.

    Article  CAS  Google Scholar 

  7. Forgac M . Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 2007; 8: 917–929.

    Article  CAS  Google Scholar 

  8. Wagner Ca Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP . Renal vacuolar H+-ATPase. Physiol Rev 2004; 84: 1263–1314.

    Article  Google Scholar 

  9. Toyomura T, Murata Y, Yamamoto A, Oka T, Sun-Wada G-H, Wada Y et al. From lysosomes to the plasma membrane: localization of vacuolar-type H+ -ATPase with the a3 isoform during osteoclast differentiation. J Biol Chem 2003; 278: 22023–22030.

    Article  CAS  Google Scholar 

  10. Pastor-Soler N, Piétrement C, Breton S . Role of acid/base transporters in the male reproductive tract and potential consequences of their malfunction. Physiol 2005; 20: 417–428.

    Article  CAS  Google Scholar 

  11. Hinton A, Sennoune SR, Bond S, Fang M, Reuveni M, Sahagian GG et al. Function of a subunit isoforms of the V-ATPase in pH homeostasis and in vitro invasion of MDA-MB231 human breast cancer cells. J Biol Chem 2009; 284: 16400–16408.

    Article  CAS  Google Scholar 

  12. Martinez-Zaguilan R, Lynch RM, Martinez GM, Gillies RJ, Vacuolar-type H . (+)-ATPases are functionally expressed in plasma membranes of human tumor cells. Am J Physiol Cell Physiol 1993; 265: C1015–C1029.

    Article  CAS  Google Scholar 

  13. Sennoune SR, Bakunts K, Martínez GM, Chua-Tuan JL, Kebir Y, Attaya MN et al. Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. Am J Physiol Cell Physiol 2004; 286: C1443–C1452.

    Article  CAS  Google Scholar 

  14. Martínez-Zaguilán R, Raghunand N, Lynch RM, Bellamy W, Martinez GM, Rojas B et al. pH and drug resistance. I Functional expression of plasmalemmal V-type H+-ATPase in drug-resistant human breast carcinoma cell lines. Biochem Pharmacol 1999; 57: 1037–1046.

    Article  Google Scholar 

  15. Nishisho T, Hata K, Nakanishi M, Morita Y, Sun-Wada GH, Wada Y et al. The a3 isoform vacuolar type H+-ATPase promotes distant metastasis in the mouse B16 melanoma cells. Mol Cancer Res 2011; 9: 845–855.

    Article  CAS  Google Scholar 

  16. Pérez-Sayáns M, Suárez-Peñaranda J, Barros-Angueira F, Diz P, Gándara-Rey J, García-García A . An update in the structure, function, and regulation of V-ATPases: the role of the C subunit. Braz J Biol 2012; 72: 189–198.

    Article  Google Scholar 

  17. Parra KJ, Kane PM . Reversible association between the V1and V0 domains of yeast vacuolar H+-ATPase is an unconventional glucose-induced effect. Mol Cell Biol 1998; 18: 7064–7074.

    Article  CAS  Google Scholar 

  18. Beyenbach KW, Wieczorek H . The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J Exper Biol 2006; 209: 577–589.

    Article  CAS  Google Scholar 

  19. Sautin YY, Lu M, Gaugler A, Zhang L, Gluck SL . Phosphatidylinositol 3-kinase-mediated effects of glucose on vacuolar H+-ATPase assembly, translocation, and acidification of intracellular compartments in renal epithelial cells. Mol Cell Biol 2005; 25: 575–589.

    Article  CAS  Google Scholar 

  20. Su Y, Zhou A, Al-Lamki RS, Karet FE . The a-subunit of the V-type H+-ATPase interacts with phosphofructokinase-1 in humans. J Biol Chem 2003; 278: 20013–20018.

    Article  CAS  Google Scholar 

  21. Lu M . The glycolytic enzyme aldolase mediates assembly, expression, and activity of vacuolar H+-ATPase. J Biol Chem 2004; 279: 8732–8739.

    Article  CAS  Google Scholar 

  22. O’Callaghan KM, Ayllon V, O'Keeffe J, Wang Y, Cox OT, Loughran G et al. Heme-binding protein HRG-1 is induced by insulin-like growth factor I and associates with the vacuolar H+-ATPase to control endosomal pH and receptor trafficking. J Biol Chem 2010; 285: 381–391.

    Article  Google Scholar 

  23. Thomsen P, Rudenko O, Berezin V, Norrild B . The HPV-16 E5 oncogene and bafilomycin A(1) influence cell motility. Biochim Biophys Acta 1999; 1452: 285–295.

    Article  CAS  Google Scholar 

  24. Spugnini EP, Citro G, Fais S . Proton pump inhibitors as anti vacuolar-ATPases drugs: a novel anticancer strategy. J Exper Clin Cancer Res 2010; 29: 44.

    Article  Google Scholar 

  25. Kubota S, Seyama Y . Overexpression of vacuolar ATPase 16-kDa subunit in 10T1/2 fibroblasts enhances invasion with concomitant induction of matrix metalloproteinase-2. Biochem Biophys Res Commun 2000; 278: 390–394.

    Article  CAS  Google Scholar 

  26. Dechant R, Binda M, Lee SS, Pelet S, Winderickx J, Peter M . Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase. EMBO J 2010; 29: 2515–2526.

    Article  CAS  Google Scholar 

  27. Clarke JF, Young P, Yonezawa K, Kasuga M, Holman G . Inhibition of the translocation of GLUT1 and GLUT4 in 3T3-L1 cells by the phosphatidylinositol 3-kinase inhibitor, wortmannin. Biochem J 1994; 300 (Pt 3): 631.

    Article  CAS  Google Scholar 

  28. Samih N, Hovsepian S, Aouani A, Lombardo D, Fayet G . Glut-1 translocation in FRTL-5 thyroid cells: role of phosphatidylinositol 3-kinase and N-glycosylation. Endocrinology 2000; 141: 4146–4155.

    Article  CAS  Google Scholar 

  29. Martínez-Muñoz Ga Kane P . Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J Biol Chem 2008; 283: 20309–20319.

    Article  Google Scholar 

  30. Yanatori I, Tabuchi M, Kawai Y, Yasui Y, Akagi R, Kishi F . Heme and non-heme iron transporters in non-polarized and polarized cells. BMC Cell Biol 2010; 11: 39.

    Article  Google Scholar 

  31. Balgi AD, Diering GH, Donohue E, Lam KKY, Fonseca BD, Zimmerman C et al. Regulation of mTORC1 signaling by pH. PLoS One 2011; 6: e21549.

    Article  CAS  Google Scholar 

  32. Murakami T, Shibuya I, Ise T, Chen ZS, Akiyama S, Nakagawa M et al. Elevated expression of vacuolar proton pump genes and cellular PH in cisplatin resistance. Int J Cancer 2001; 93: 869–874.

    Article  CAS  Google Scholar 

  33. Ohta T, Arakawa H, Futagami F, Fushida S, Kitagawa H, Kayahara M et al. Bafilomycin A1 induces apoptosis in the human pancreatic cancer cell line Capan‐1. J Pathol 1999; 185: 324–330.

    Article  Google Scholar 

  34. Perez-Sayans M, Somoza-Martin JM, Barros-Angueira F, Rey JMG, Garcia-Garcia A . V-ATPase inhibitors and implication in cancer treatment. Cancer Treat Rev 2009; 35: 707–713.

    Article  CAS  Google Scholar 

  35. Sennoune RS, Martinez-Zaguilan R . Vacuolar H-ATPase signaling pathway in cancer. Curr Protein Pept Sci 2012; 13: 152–163.

    Article  CAS  Google Scholar 

  36. Vander Heiden MG, Cantley LC, Thompson CB . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.

    Article  CAS  Google Scholar 

  37. Lu X, Qin W, Li J, Tan N, Pan D, Zhang H et al. The growth and metastasis of human hepatocellular carcinoma xenografts are inhibited by small interfering RNA targeting to the subunit ATP6L of proton pump. Cancer Res 2005; 65: 6843–6849.

    Article  CAS  Google Scholar 

  38. Nilsson C, Kågedal K, Johansson U, Ollinger K . Analysis of cytosolic and lysosomal pH in apoptotic cells by flow cytometry. Methods Cell Sci 2003; 25: 185–194.

    Article  Google Scholar 

  39. Zhdanov AV, Dmitriev RI, Golubeva AV, Gavrilova SA, Papkovsky DB . Chronic hypoxia leads to a glycolytic phenotype and suppressed HIF-2 signaling in PC12 cells. Biochim Biophys Acta 2013; 1830: 3553–3569.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to our colleagues in the Cell Biology Laboratory and Dr Kellie Dean for helpful discussions, and to Kurt Tidmore for preparing illustrations. This work was supported by the Health Research Board (PhD Scholars Programme in Cancer Biology (FF)) and Science Foundation Ireland (PI Award: 06/INI/B107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R O'Connor.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fogarty, F., O'Keeffe, J., Zhadanov, A. et al. HRG-1 enhances cancer cell invasive potential and couples glucose metabolism to cytosolic/extracellular pH gradient regulation by the vacuolar-H+ ATPase. Oncogene 33, 4653–4663 (2014). https://doi.org/10.1038/onc.2013.403

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.403

Keywords

This article is cited by

Search

Quick links