Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Macrophage contact induces RhoA GTPase signaling to trigger tumor cell intravasation

Abstract

Most cancer patients die as a result of metastasis, thus it is important to understand the molecular mechanisms of dissemination, including intra- and extravasation. Although the mechanisms of extravasation have been vastly studied in vitro and in vivo, the process of intravasation is still unclear. Furthermore, how cells in the tumor microenvironment facilitate tumor cell intravasation is still unknown. Using high-resolution imaging, we found that macrophages enhance tumor cell intravasation upon physical contact. Macrophage and tumor cell contact induce RhoA activity in tumor cells, triggering the formation of actin-rich degradative protrusions called invadopodia, enabling tumor cells to degrade and break through matrix barriers during tumor cell transendothelial migration. Interestingly, we show that macrophage-induced invadopodium formation and tumor cell intravasation also occur in patient-derived tumor cells and in vivo models, revealing a conserved mechanism of tumor cell intravasation. Our results illustrate a novel heterotypic cell contact-mediated signaling role for RhoA, as well as yield mechanistic insight into the ability of cells within the tumor microenvironment to facilitate steps of the metastatic cascade.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Roussos ET, Balsamo M, Alford SK, Wyckoff JB, Gligorijevic B, Wang Y et al. Mena invasive (MenaINV) promotes multicellular streaming motility and transendothelial migration in a mouse model of breast cancer. J Cell Sci 2011; 124 (Pt 13): 2120–2131.

    Article  CAS  Google Scholar 

  2. Patsialou A, Bravo-Cordero JJ, Wang Y, Entenberg D, Liu H, Clarke MF et al. Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors. IntraVital 2013, (in press).

  3. Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 2004; 64: 7022–7029.

    Article  CAS  Google Scholar 

  4. Wyckoff JB, Wang Y, Lin EY, Li JF, Goswami S, Stanley ER et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 2007; 67: 2649–2656.

    Article  CAS  Google Scholar 

  5. Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD . Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci USA 2012; 109: 13515–13520.

    Article  CAS  Google Scholar 

  6. Robinson BD, Sica GL, Liu YF, Rohan TE, Gertler FB, Condeelis JS et al. Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination. Clin Cancer Res 2009; 15: 2433–2441.

    Article  CAS  Google Scholar 

  7. Reymond N, Im JH, Garg R, Vega FM, Borda d'Agua B, Riou P et al. Cdc42 promotes transendothelial migration of cancer cells through beta1 integrin. J Cell Biol 2012; 199: 653–668.

    Article  CAS  Google Scholar 

  8. Reymond N, Riou P, Ridley AJ . Rho GTPases and cancer cell transendothelial migration. Methods Mol Biol 2012; 827: 123–142.

    Article  CAS  Google Scholar 

  9. Jin F, Brockmeier U, Otterbach F, Metzen E . New insight into the SDF-1/CXCR4 axis in a breast carcinoma model: hypoxia-induced endothelial SDF-1 and tumor cell CXCR4 are required for tumor cell intravasation. Molecular Cancer Res 2012; 10: 1021–1031.

    Article  CAS  Google Scholar 

  10. Haidari M, Zhang W, Caivano A, Chen Z, Ganjehei L, Mortazavi A et al. Integrin alpha2beta1 mediates tyrosine phosphorylation of vascular endothelial cadherin induced by invasive breast cancer cells. J Biol Chem 2012; 287: 32981–32992.

    Article  CAS  Google Scholar 

  11. Haidari M, Zhang W, Chen Z, Ganjehei L, Warier N, Vanderslice P et al. Myosin light chain phosphorylation facilitates monocyte transendothelial migration by dissociating endothelial adherens junctions. Cardiovascular Res 2011; 92: 456–465.

    Article  CAS  Google Scholar 

  12. Voura EB, Sandig M, Kalnins VI, Siu C . Cell shape changes and cytoskeleton reorganization during transendothelial migration of human melanoma cells. Cell Tissue Res 1998; 293: 375–387.

    Article  CAS  Google Scholar 

  13. Voura EB, Sandig M, Siu CH . Cell-cell interactions during transendothelial migration of tumor cells. Microscopy Res Tech 1998; 43: 265–275.

    Article  CAS  Google Scholar 

  14. Stoletov K, Montel V, Lester RD, Gonias SL, Klemke R . High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proc Nat Acad Sci USA 2007; 104: 17406–17411.

    Article  CAS  Google Scholar 

  15. Tremblay PL, Auger FA, Huot J . Regulation of transendothelial migration of colon cancer cells by E-selectin-mediated activation of p38 and ERK MAP kinases Oncogene 2006; 25: 6563–6573.

  16. Patsialou A, Wyckoff J, Wang Y, Goswami S, Stanley ER, Condeelis JS . Invasion of human breast cancer cells in vivo requires both paracrine and autocrine loops involving the colony-stimulating factor-1 receptor. Cancer Res 2009; 69: 9498–9506.

    Article  CAS  Google Scholar 

  17. Das SK, Stanley ER, Guilbert LJ, Forman LW . Human colony-stimulating factor (CSF-1) radioimmunoassay: resolution of three subclasses of human colony-stimulating factors. Blood 1981; 58: 630–641.

    CAS  Google Scholar 

  18. Koop S, MacDonald IC, Luzzi K, Schmidt EE, Morris VL, Grattan M et al. Fate of melanoma cells entering the microcirculation: over 80% survive and extravasate. Cancer Res 1995; 55: 2520–2523.

    CAS  Google Scholar 

  19. Kramer RH, Nicolson GL . Interactions of tumor cells with vascular endothelial cell monolayers: a model for metastatic invasion. Proc Natl Acad Sci USA 1979; 76: 5704–5708.

    Article  CAS  Google Scholar 

  20. Nicolson GL . Metastatic tumor cell attachment and invasion assay utilizing vascular endothelial cell monolayers. J Histochem Cytochem 1982; 30: 214–220.

    Article  CAS  Google Scholar 

  21. Ohigashi H, Shinkai K, Mukai M, Ishikawa O, Imaoka S, Iwanaga T et al. In vitro invasion of endothelial cell monolayer by rat ascites hepatoma cells. Jap J Cancer Res 1989; 80: 818–821.

    Article  CAS  Google Scholar 

  22. Proebstl D, Voisin MB, Woodfin A, Whiteford J, D'Acquisto F, Jones GE et al. Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J Exp Med 2012; 209: 1219–1234.

    Article  CAS  Google Scholar 

  23. Yu W, Chen J, Xiong Y, Pixley FJ, Dai XM, Yeung YG et al. CSF-1 receptor structure/function in MacCsf1r−/− macrophages: regulation of proliferation, differentiation, and morphology. J Leukoc Biol 2008; 84: 852–863.

    Article  CAS  Google Scholar 

  24. Gligorijevic B, Wyckoff J, Yamaguchi H, Wang Y, Roussos ET, Condeelis J . N-WASP-mediated invadopodium formation is involved in intravasation and lung metastasis of mammary tumors. J Cell Sci 2012; 125 (Pt 3): 724–734.

    Article  CAS  Google Scholar 

  25. Yamaguchi H . Pathological roles of invadopodia in cancer invasion and metastasis Eur J Cell Biol 2012; 91 (11-12): 902–907.

    Article  CAS  Google Scholar 

  26. Saltel F, Daubon T, Juin A, Ganuza IE, Veillat V, Genot E . Invadosomes: intriguing structures with promise. Eur J Cell Biol 2011; 90 (2-3): 100–107.

    Article  CAS  Google Scholar 

  27. Linder S, Wiesner C, Himmel M . Degrading devices: invadosomes in proteolytic cell invasion. Ann Rev Cell Dev Biol 2011; 27: 185–211.

    Article  CAS  Google Scholar 

  28. Mader CC, Oser M, Magalhaes MA, Bravo-Cordero JJ, Condeelis J, Koleske AJ et al. An EGFR-Src-Arg-cortactin pathway mediates functional maturation of invadopodia and breast cancer cell invasion. Cancer Res 2011; 71: 1730–1741.

    Article  CAS  Google Scholar 

  29. Oser M, Mader CC, Gil-Henn H, Magalhaes M, Bravo-Cordero JJ, Koleske AJ et al. Specific tyrosine phosphorylation sites on cortactin regulate Nck1-dependent actin polymerization in invadopodia. J Cell Sci 2010; 123 (Pt 21): 3662–3673.

    Article  CAS  Google Scholar 

  30. Seals DF, Azucena EF Jr., Pass I, Tesfay L, Gordon R, Woodrow M et al. The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer Cell 2005; 7: 155–165.

    Article  CAS  Google Scholar 

  31. Bowden ET, Barth M, Thomas D, Glazer RI, Mueller SC . An invasion-related complex of cortactin, paxillin and PKCmu associates with invadopodia at sites of extracellular matrix degradation. Oncogene 1999; 18: 4440–4449.

    Article  CAS  Google Scholar 

  32. Clark ES, Whigham AS, Yarbrough WG, Weaver AM . Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia. Cancer Res 2007; 67: 4227–4235.

    Article  CAS  Google Scholar 

  33. Magalhaes MA, Larson DR, Mader CC, Bravo-Cordero JJ, Gil-Henn H, Oser M et al. Cortactin phosphorylation regulates cell invasion through a pH-dependent pathway. J Cell Biol 2011; 195: 903–920.

    Article  CAS  Google Scholar 

  34. Beaty BT, Sharma VP, Bravo-Cordero JJ, Simpson MA, Eddy RJ, Koleske AJ et al. beta1 integrin regulates Arg to promote invadopodial maturation and matrix degradation. Mol Biol Cell 2013; 24: 1661–1675.

    Article  CAS  Google Scholar 

  35. Bravo-Cordero JJ, Marrero-Diaz R, Megias D, Genis L, Garcia-Grande A, Garcia MA et al. MT1-MMP proinvasive activity is regulated by a novel Rab8-dependent exocytic pathway. EMBO J 2007; 26: 1499–1510.

    Article  CAS  Google Scholar 

  36. Liu H, Patel MR, Prescher JA, Patsialou A, Qian D, Lin J et al. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci USA 2010; 107: 18115–18120.

    Article  CAS  Google Scholar 

  37. Sakurai-Yageta M, Recchi C, Le Dez G, Sibarita JB, Daviet L, Camonis J et al. The interaction of IQGAP1 with the exocyst complex is required for tumor cell invasion downstream of Cdc42 and RhoA. J Cell Biol 2008; 181: 985–998.

    Article  CAS  Google Scholar 

  38. Bravo-Cordero JJ, Oser M, Chen X, Eddy R, Hodgson L, Condeelis J . A novel spatiotemporal RhoC activation pathway locally regulates cofilin activity at invadopodia. Curr Biol 2011; 21: 635–644.

    Article  CAS  Google Scholar 

  39. Lessey EC, Guilluy C, Burridge K . From mechanical force to RhoA activation. Biochemistry 2012; 51: 7420–7432.

    Article  CAS  Google Scholar 

  40. Pertz O, Hodgson L, Klemke RL, Hahn KM . Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 2006; 440: 1069–1072.

    Article  CAS  Google Scholar 

  41. Blouw B, Seals DF, Pass I, Diaz B, Courtneidge SA . A role for the podosome/invadopodia scaffold protein Tks5 in tumor growth in vivo. Eur Cell Biol 2008; 87 (8-9): 555–567.

    Article  CAS  Google Scholar 

  42. Lovett DH, Cheng S, Cape L, Pollock AS, Mertens PR . YB-1 alters MT1-MMP trafficking and stimulates MCF-7 breast tumor invasion and metastasis. Biochem Biophys Res Commun 2010; 398: 482–488.

    Article  CAS  Google Scholar 

  43. Gil-Henn H, Patsialou A, Wang Y, Warren MS, Condeelis JS, Koleske AJ . Arg/Abl2 promotes invasion and attenuates proliferation of breast cancer in vivo. Oncogene 2013; 32: 2622–2630.

    Article  CAS  Google Scholar 

  44. Hu Y, Kiely JM, Szente BE, Rosenzweig A, Gimbrone MA Jr. . E-selectin-dependent signaling via the mitogen-activated protein kinase pathway in vascular endothelial cells. J Immunol 2000; 165: 2142–2148.

    Article  CAS  Google Scholar 

  45. Hu Y, Szente B, Kiely JM, Gimbrone MA Jr. . Molecular events in transmembrane signaling via E-selectin. SHP2 association, adaptor protein complex formation and ERK1/2 activation. J Biol Chem 2001; 276: 48549–48553.

    Article  CAS  Google Scholar 

  46. Laferriere J, Houle F, Taher MM, Valerie K, Huot J . Transendothelial migration of colon carcinoma cells requires expression of E-selectin by endothelial cells and activation of stress-activated protein kinase-2 (SAPK2/p38) in the tumor cells. J Biol Chem 2001; 276: 33762–33772.

    Article  CAS  Google Scholar 

  47. Rousseau S, Houle F, Landry J, Huot J . p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 1997; 15: 2169–2177.

    Article  CAS  Google Scholar 

  48. Walz G, Aruffo A, Kolanus W, Bevilacqua M, Seed B . Recognition by ELAM-1 of the sialyl-Lex determinant on myeloid and tumor cells. Science 1990; 250: 1132–1135.

    Article  CAS  Google Scholar 

  49. Weiss TW, Mehrabi MR, Kaun C, Zorn G, Kastl SP, Speidl WS et al. Prostaglandin E1 induces vascular endothelial growth factor-1 in human adult cardiac myocytes but not in human adult cardiac fibroblasts via a cAMP-dependent mechanism. J Mol Cell Cardiol 2004; 36: 539–546.

    Article  CAS  Google Scholar 

  50. Yoshida M, Takano Y, Sasaoka T, Izumi T, Kimura A . E-selectin polymorphism associated with myocardial infarction causes enhanced leukocyte-endothelial interactions under flow conditions. Arterioscler Thromb Vasc Biol 2003; 23: 783–788.

    Article  CAS  Google Scholar 

  51. Li B, Zhao WD, Tan ZM, Fang WG, Zhu L, Chen YH . Involvement of Rho/ROCK signalling in small cell lung cancer migration through human brain microvascular endothelial cells. FEBS Letts 2006; 580: 4252–4260.

    Article  CAS  Google Scholar 

  52. McGhee EJ, Morton JP, Von Kriegsheim A, Schwarz JP, Karim SA, Carragher NO et al. FLIM-FRET imaging in vivo reveals 3D-environment spatially regulates RhoGTPase activity during cancer cell invasion. Small GTPases 2011; 2: 239–244.

    Article  Google Scholar 

  53. Timpson P, McGhee EJ, Morton JP, von Kriegsheim A, Schwarz JP, Karim SA et al. Spatial regulation of RhoA activity during pancreatic cancer cell invasion driven by mutant p53. Cancer Res 2011; 71: 747–757.

    Article  CAS  Google Scholar 

  54. Carmona-Fontaine C, Matthews HK, Kuriyama S, Moreno M, Dunn GA, Parsons M et al. Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 2008; 456: 957–961.

    Article  CAS  Google Scholar 

  55. Ponik SM, Trier SM, Wozniak MA, Eliceiri KW, Keely PJ . RhoA is down-regulated at cell-cell contacts via p190RhoGAP-B in response to tensional homeostasis. Mol Biol Cell 2013; 24: 1688–1699.

    Article  CAS  Google Scholar 

  56. Witzel S, Zimyanin V, Carreira-Barbosa F, Tada M, Heisenberg CP . Wnt11 controls cell contact persistence by local accumulation of Frizzled 7 at the plasma membrane. J Cell Biol 2006; 175: 791–802.

    Article  CAS  Google Scholar 

  57. Arthur WT, Noren NK, Burridge K . Regulation of Rho family GTPases by cell-cell and cell-matrix adhesion. Biol Res 2002; 35: 239–246.

    Article  CAS  Google Scholar 

  58. Nethe M, de Kreuk BJ, Tauriello DV, Anthony EC, Snoek B, Stumpel T et al. Rac1 acts in conjunction with Nedd4 and dishevelled-1 to promote maturation of cell-cell contacts. J Cell Sci 2012; 125 (Pt 14): 3430–3442.

    Article  CAS  Google Scholar 

  59. Omelchenko T, Hall A . Myosin-IXA regulates collective epithelial cell migration by targeting RhoGAP activity to cell-cell junctions. Curr Biol 2012; 22: 278–288.

    Article  CAS  Google Scholar 

  60. Sharma VP, DesMarais V, Sumners C, Shaw G, Narang A . Immunostaining evidence for PI(4,5)P2 localization at the leading edge of chemoattractant-stimulated HL-60 cells. J Leukoc Biol 2008; 84: 440–447.

    Article  CAS  Google Scholar 

  61. Sharma VP, Entenberg D, Condeelis J . High-resolution live-cell imaging and time-lapse microscopy of invadopodium dynamics and tracking analysis. Methods Mol Biol 2013; 1046: 343–357.

    Article  Google Scholar 

  62. Lipschutz JH, O'Brien LE, Altschuler Y, Avrahami D, Nguyen Y, Tang K et al. Analysis of membrane traffic in polarized epithelial cells. Curr Protoc Cell BiolS 2001. 15.5.1–15.5.18.

  63. Spiering D, Hodgson L . Multiplex imaging of Rho family GTPase activities in living cells. Methods Mol Biol 2012; 827: 215–234.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Brian Beaty for advice regarding invadopodium experiments; David Entenberg, Vera Desmarais, Jeffrey Wyckoff and the Analytical Imaging Facility for help with microscopy; Richard Stanley, Fernando Macian, Esther Arwert, Allison Harney and Veronika Micolski for guidance and reagents; Yarong Wang for help with animal injections; and the Albert Einstein shRNA Core, the Flow Cytometry Core facility and the Histology and Comparative Pathology Core for help with experiments. We also thank Jeffrey Segall, Dianne Cox, Anne Bresnick and Aviv Bergmann for helpful discussions, and the Condeelis, Segall, Cox and Hodgson labs for advice and reagents. This work was funded by NIH CA150344 (JC), NIH CA100324 (AP), NIH GM093121 (LH and JJB-C), Post-doctoral fellowship from Susan G. Komen for the Cure© KG111405 (VPS) and NIH CA159663 (MRJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Roh-Johnson.

Ethics declarations

Competing interests

JC holds equity in and is a member of the Scientific Advisory Board of MetaStat, Inc.

Additional information

Author Contributions

MR-J and JC conceived the project idea. MR-J, JJB-C and LH performed RhoA biosensor experiments; LH cloned RhoA mutant constructs; AP maintained TN1-GFP cells, created the MDA-MB-231 dtomato cell line and performed qRT-PCR; VPS optimized protocols regarding invadopodium assays and helped with microscopy; PG and MR-J performed IMARIS 3D reconstructions; and HL created the TN1-GFP cells. MR-J performed the rest of the experiments. All authors contributed to discussions related to the manuscript. MR-J and JC wrote the manuscript.

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roh-Johnson, M., Bravo-Cordero, J., Patsialou, A. et al. Macrophage contact induces RhoA GTPase signaling to trigger tumor cell intravasation. Oncogene 33, 4203–4212 (2014). https://doi.org/10.1038/onc.2013.377

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.377

Keywords

This article is cited by

Search

Quick links