Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Wnt-driven intestinal tumourigenesis is suppressed by Chk1 deficiency but enhanced by conditional haploinsufficiency

Abstract

Chk1 is essential in maintaining genomic stability due to its role in cell cycle regulation. Several recent studies have indicated that the abrogation of checkpoints in tumourigenesis through the inhibition of Chk1 may be of therapeutic value. To further investigate the role of Chk1 in the mouse small intestine and its potential role as a therapy for colorectal cancer, we simultaneously deleted Chk1 and Apc in the mouse small intestine. We found that homozygous loss of Chk1 is not compatible with Wnt-driven proliferation and resulted in the suppression of Wnt-driven tumourigenesis in the mouse small intestine. In contrast, heterozygous loss of Chk1 in a Wnt-driven background resulted in an increase in DNA damage and apoptosis and accelerated both tumour development and progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Grady WM . Genomic instability and colon cancer. Cancer Metastasis Rev 2004; 23: 11–27.

    Article  CAS  PubMed  Google Scholar 

  2. Söreide K, Janssen E, Söiland H, Körner H, Baak J . Microsatellite instability in colorectal cancer. Br J Surg 2006; 93: 395–406.

    Article  PubMed  Google Scholar 

  3. Venkatesha VA, Parsels LA, Parsels JD, Zhao L, Zabludoff SD, Simeone DM et al. Sensitization of pancreatic cancer stem cells to gemcitabine by Chk1 inhibition. Neoplasia 2012; 14: 519–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Montano R, Chung I, Garner KM, Parry D, Eastman A . Preclinical development of the novel Chk1 inhibitor SCH900776 in combination with DNA-damaging agents and antimetabolites. Mol Cancer Ther 2012; 11: 427–438.

    Article  CAS  PubMed  Google Scholar 

  5. Plummer R . Poly(ADP-ribose) polymerase inhibition: a new direction for BRCA and triple-negative breast cancer? Breast Cancer Res 2011; 13: 218.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ma CX, Janetka JW, Piwnica-Worms H . Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol Med 2011; 17: 88–96.

    Article  CAS  PubMed  Google Scholar 

  7. Bartek J, Mistrik M, Bartkova J . Thresholds of replication stress signaling in cancer development and treatment. Nat Struct Mol Biol 2012; 19: 5–7.

    Article  CAS  PubMed  Google Scholar 

  8. Bartkova J, Horejsí Z, Koed K, Krämer A, Tort F, Zieger K et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005; 434: 864–870.

    CAS  PubMed  Google Scholar 

  9. Bartek J, Lukas J, Bartkova J . DNA damage response as an anti-cancer barrier: damage threshold and the concept of 'conditional haploinsufficiency'. Cell Cycle 2007; 6: 2344–2347.

    Article  CAS  PubMed  Google Scholar 

  10. Bartek J, Lukas J . Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 2003; 3: 421–429.

    Article  CAS  PubMed  Google Scholar 

  11. Murga M, Campaner S, Lopez-Contreras AJ, Toledo LI, Soria R, Montaña MF et al. Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nat Struct Mol Biol 2011; 18: 1331–1335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 2000; 14: 1448–1459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lam MH, Liu Q, Elledge SJ, Rosen JM . Chk1 is haploinsufficient for multiple functions critical to tumor suppression. Cancer Cell 2004; 6: 45–59.

    Article  CAS  PubMed  Google Scholar 

  14. Greenow KR, Clarke AR, Jones RH . Chk1 deficiency in the mouse small intestine results in p53-independent crypt death and subsequent intestinal compensation. Oncogene 2009; 28: 1443–1453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zaugg K, Su YW, Reilly PT, Moolani Y, Cheung CC, Hakem R et al. Cross-talk between Chk1 and Chk2 in double-mutant thymocytes. Proc Natl Acad Sci USA 2007; 104: 3805–3810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fishler T, Li YY, Wang RH, Kim HS, Sengupta K, Vassilopoulos A et al. Genetic instability and mammary tumor formation in mice carrying mammary-specific disruption of Chk1 and p53. Oncogene 2010; 29: 4007–4017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tho LM, Libertini S, Rampling R, Sansom O, Gillespie DA . Chk1 is essential for chemical carcinogen-induced mouse skin tumorigenesis. Oncogene 2012; 31: 1366–1375.

    Article  CAS  PubMed  Google Scholar 

  18. Sansom O, Reed K, Hayes A, Ireland H, Brinkmann H, Newton I et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev 2004; 18: 1385–1390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shibata H, Toyama K, Shioya H, Ito M, Hirota M, Hasegawa S et al. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 1997; 278: 120–123.

    Article  CAS  PubMed  Google Scholar 

  20. Ireland H, Kemp R, Houghton C, Howard L, Clarke AR, Sansom OJ et al. Inducible Cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of beta-catenin. Gastroenterology 2004; 126: 1236–1246.

    Article  CAS  PubMed  Google Scholar 

  21. Sansom OJ, Reed KR, Hayes AJ, Ireland H, Brinkmann H, Newton IP et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev 2004; 18: 1385–1390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Merritt AJ, Allen TD, Potten CS, Hickman JA . Apoptosis in small intestinal epithelial from p53-null mice: evidence for a delayed, p53-independent G2/M-associated cell death after gamma-irradiation. Oncogene 1997; 14: 2759–2766.

    Article  CAS  PubMed  Google Scholar 

  23. Bakkenist CJ, Kastan MB . DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003; 421: 499–506.

    Article  CAS  PubMed  Google Scholar 

  24. Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM . Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Biol Chem 2000; 275: 9390–9395.

    Article  CAS  PubMed  Google Scholar 

  25. Bolderson E, Richard DJ, Zhou BB, Khanna KK . Recent advances in cancer therapy targeting proteins involved in DNA double-strand break repair. Clin Cancer Res 2009; 15: 6314–6320.

    Article  CAS  PubMed  Google Scholar 

  26. Salhab N, Jones DJ, Bos JL, Kinsella A, Schofield PF . Detection of ras gene alterations and ras proteins in colorectal cancer. Dis Colon Rectum 1989; 32: 659–664.

    Article  CAS  PubMed  Google Scholar 

  27. Soriano P . Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 1999; 21: 70–71.

    Article  CAS  PubMed  Google Scholar 

  28. Bjerknes M, Cheng H . Methods for the isolation of intact epithelium from the mouse intestine. Anat Rec 1981; 199: 565–574.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Cancer Research UK. Particular thanks go to Mark Bishop, Lucie Pietzka and Derek Scarborough for technical assistance. The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A R Clarke.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenow, K., Clarke, A., Williams, G. et al. Wnt-driven intestinal tumourigenesis is suppressed by Chk1 deficiency but enhanced by conditional haploinsufficiency. Oncogene 33, 4089–4096 (2014). https://doi.org/10.1038/onc.2013.371

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.371

Keywords

This article is cited by

Search

Quick links