Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

BMP4/Thrombospondin-1 loop paracrinically inhibits tumor angiogenesis and suppresses the growth of solid tumors

Abstract

Bone morphogenetic protein 4 (BMP4) has potential as an anticancer agent. Recent studies have suggested that BMP4 inhibits the survival of cancer stem cells (CSCs) of neural and colon cancers. Here, we showed that BMP4 paracrinically inhibited tumor angiogenesis via the induction of Thrombospondin-1 (TSP1), and consequently suppressed tumor growth in vivo. Although HeLa (human cervical cancer), HCI-H460-LNM35 (highly metastatic human lung cancer) and B16 (murine melanoma) cells did not respond to the BMP4 treatment in vitro, the growth of xeno- and allografts of these cells was suppressed via reductions in tumor angiogenesis after intraperitoneal treatment with BMP4. When we assessed the mRNA expression of major angiogenesis-related factors in grafted tumors, we found that the expression of TSP1 was significantly upregulated by BMP4 administration. We then confirmed that BMP4 was less effective in suppressing the tumor growth of TSP1-knockdown cancer cells. Furthermore, we found that BMP4 reduced vascular endothelial growth factor (VEGF) expression in vivo in a TSP1-dependent manner, which indicates that BMP4 interfered with the stabilization of tumor angiogenesis. In conclusion, the BMP4/TSP1 loop paracrinically suppressed tumor angiogenesis in the tumor microenvironment, which subsequently reduced the growth of tumors. BMP4 may become an antitumor agent and open a new field of antiangiogenic therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Zhao H, Ayrault O, Zindy F, Kim JH, Roussel MF . Post-transcriptional down-regulation of Atoh1/Math1 by bone morphogenic proteins suppresses medulloblastoma development. Genes Dev 2008; 22: 722–727.

    Article  CAS  Google Scholar 

  2. Su D, Zhu S, Han X, Feng Y, Huang H, Ren G et al. BMP4-Smad signaling pathway mediates adriamycin-induced premature senescence in lung cancer cells. J Biol Chem 2009; 284: 12153–12164.

    Article  CAS  Google Scholar 

  3. Buckley S, Shi W, Driscoll B, Ferrario A, Anderson K, Warburton D . BMP4 signaling induces senescence and modulates the oncogenic phenotype of A549 lung adenocarcinoma cells. Am J Physiol Lung Cell Mol Physiol 2004; 286: L81–L86.

    Article  CAS  Google Scholar 

  4. Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 2006; 444: 761–765.

    Article  CAS  Google Scholar 

  5. Lombardo Y, Scopelliti A, Cammareri P, Todaro M, Iovino F, Ricci-Vitiani L et al. Bone morphogenetic protein 4 induces differentiation of colorectal cancer stem cells and increases their response to chemotherapy in mice. Gastroenterology 2011; 140: 297–309.

    Article  CAS  Google Scholar 

  6. Chiu CY, Kuo KK, Kuo TL, Lee KT, Cheng KH . The activation of MEK/ERK signaling pathway by bone morphogenetic protein 4 to increase hepatocellular carcinoma cell proliferation and migration. Mol Cancer Res 2012; 10: 415–427.

    Article  CAS  Google Scholar 

  7. Zhou Z, Sun L, Wang Y, Wu Z, Geng J, Miu W et al. Bone morphogenetic protein 4 inhibits cell proliferation and induces apoptosis in glioma stem cells. Cancer Biother Radiopharm 2011; 26: 77–83.

    Article  CAS  Google Scholar 

  8. Sarnat HB, Flores-Sarnat L . Embryology of the neural crest: its inductive role in the neurocutaneous syndromes. J Child Neurol 2005; 20: 637–643.

    Article  Google Scholar 

  9. Nishanian TG, Kim JS, Foxworth A, Waldman T . Suppression of tumorigenesis and activation of Wnt signaling by bone morphogenetic protein 4 in human cancer cells. Cancer Biol Ther 2004; 3: 667–675.

    Article  CAS  Google Scholar 

  10. Rothhammer T, Braig S, Bosserhoff AK . Bone morphogenetic proteins induce expression of metalloproteinases in melanoma cells and fibroblasts. Eur J Cancer 2008; 44: 2526–2534.

    Article  CAS  Google Scholar 

  11. Iantosca MR, McPherson CE, Ho SY, Maxwell GD . Bone morphogenetic proteins-2 and -4 attenuate apoptosis in a cerebellar primitive neuroectodermal tumor cell line. J Neurosci Res 1999; 56: 248–258.

    Article  CAS  Google Scholar 

  12. Shepherd TG, Theriault BL, Nachtigal MW . Autocrine BMP4 signalling regulates ID3 proto-oncogene expression in human ovarian cancer cells. Gene 2008; 414: 95–105.

    Article  CAS  Google Scholar 

  13. Guo W, Gorlick R, Ladanyi M, Meyers PA, Huvos AG, Bertino JR et al. Expression of bone morphogenetic proteins and receptors in sarcomas. Clin Orthop Relat Res 1999; 365: 175–183.

    Article  Google Scholar 

  14. Kiyono M, Shibuya M . Bone morphogenetic protein 4 mediates apoptosis of capillary endothelial cells during rat pupillary membrane regression. Mol Cell Biol 2003; 23: 4627–4636.

    Article  CAS  Google Scholar 

  15. Kiyono M, Shibuya M . Inhibitory Smad transcription factors protect arterial endothelial cells from apoptosis induced by BMP4. Oncogene 2006; 25: 7131–7137.

    Article  CAS  Google Scholar 

  16. Winnier G, Blessing M, Labosky PA, Hogan BL . Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 1995; 9: 2105–2116.

    Article  CAS  Google Scholar 

  17. Hayashi S, Okamoto N, Makita Y, Hata A, Imoto I, Inazawa J . Heterozygous deletion at 14q22.1-q22.3 including the BMP4 gene in a patient with psychomotor retardation, congenital corneal opacity and feet polysyndactyly. Am J Med Genet A 2008; 146A: 2905–2910.

    Article  Google Scholar 

  18. Bakrania P, Efthymiou M, Klein JC, Salt A, Bunyan DJ, Wyatt A et al. Mutations in BMP4 cause eye, brain, and digit developmental anomalies: overlap between the BMP4 and hedgehog signaling pathways. Am J Hum Genet 2008; 82: 304–319.

    Article  CAS  Google Scholar 

  19. Farnsworth RH, Karnezis T, Shayan R, Matsumoto M, Nowell CJ, Achen MG et al. A role for bone morphogenetic protein-4 in lymph node vascular remodeling and primary tumor growth. Cancer Res 2011; 71: 6547–6557.

    Article  CAS  Google Scholar 

  20. Komuro A, Yashiro M, Iwata C, Morishita Y, Johansson E, Matsumoto Y et al. Diffuse-type gastric carcinoma: progression, angiogenesis, and transforming growth factor beta signaling. J Natl Cancer Inst 2009; 101: 592–604.

    Article  CAS  Google Scholar 

  21. Nor JE, Mitra RS, Sutorik MM, Mooney DJ, Castle VP, Polverini PJ . Thrombospondin-1 induces endothelial cell apoptosis and inhibits angiogenesis by activating the caspase death pathway. J Vasc Res 2000; 37: 209–218.

    Article  CAS  Google Scholar 

  22. Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K . Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells 2002; 7: 1191–1204.

    Article  CAS  Google Scholar 

  23. Haubold M, Weise A, Stephan H, Dunker N . Bone morphogenetic protein 4 (BMP4) signaling in retinoblastoma cells. Int J Biol Sci 2010; 6: 700–715.

    Article  CAS  Google Scholar 

  24. Raman M, Chen W, Cobb MH . Differential regulation and properties of MAPKs. Oncogene 2007; 26: 3100–3112.

    Article  CAS  Google Scholar 

  25. Osawa T, Muramatsu M, Wang F, Tsuchida R, Kodama T, Minami T et al. Increased expression of histone demethylase JHDM1D under nutrient starvation suppresses tumor growth via down-regulating angiogenesis. Proc Natl Acad Sci USA 2011; 108: 20725–20729.

    Article  CAS  Google Scholar 

  26. Harris AL . Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2002; 2: 38–47.

    Article  CAS  Google Scholar 

  27. Wang F, Osawa T, Tsuchida R, Yuasa Y, Shibuya M . Downregulation of receptor for activated C-kinase 1 (RACK1) suppresses tumor growth by inhibiting tumor cell proliferation and tumor-associated angiogenesis. Cancer Sci 2011; 102: 2007–2013.

    Article  CAS  Google Scholar 

  28. Shibuya M . Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis. BMB Rep 2008; 41: 278–286.

    Article  CAS  Google Scholar 

  29. Thawani JP, Wang AC, Than KD, Lin CY, La Marca F, Park P . Bone morphogenetic proteins and cancer: review of the literature. Neurosurgery 2010; 66: 233–246 discussion 246.

    Article  Google Scholar 

  30. Paez-Pereda M, Giacomini D, Refojo D, Nagashima AC, Hopfner U, Grubler Y et al. Involvement of bone morphogenetic protein 4 (BMP-4) in pituitary prolactinoma pathogenesis through a Smad/estrogen receptor crosstalk. Proc Natl Acad Sci USA 2003; 100: 1034–1039.

    Article  CAS  Google Scholar 

  31. Kim IY, Lee DH, Lee DK, Kim WJ, Kim MM, Morton RA et al. Restoration of bone morphogenetic protein receptor type II expression leads to a decreased rate of tumor growth in bladder transitional cell carcinoma cell line TSU-Pr1. Cancer Res 2004; 64: 7355–7360.

    Article  CAS  Google Scholar 

  32. Li Z, Fei T, Zhang J, Zhu G, Wang L, Lu D et al. BMP4 signaling acts via dual-specificity phosphatase 9 to control ERK activity in mouse embryonic stem cells. Cell Stem Cell 2012; 10: 171–182.

    Article  CAS  Google Scholar 

  33. Qi X, Li TG, Hao J, Hu J, Wang J, Simmons H et al. BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Proc Natl Acad Sci USA 2004; 101: 6027–6032.

    Article  CAS  Google Scholar 

  34. Tsuchida R, Das B, Yeger H, Koren G, Shibuya M, Thorner PS et al. Cisplatin treatment increases survival and expansion of a highly tumorigenic side-population fraction by upregulating VEGF/Flt1 autocrine signaling. Oncogene 2008; 27: 3923–3934.

    Article  CAS  Google Scholar 

  35. Das B, Tsuchida R, Malkin D, Koren G, Baruchel S, Yeger H . Hypoxia enhances tumor stemness by increasing the invasive and tumorigenic side population fraction. Stem Cells 2008; 26: 1818–1830.

    Article  Google Scholar 

  36. Hida K, Hida Y, Amin DN, Flint AF, Panigrahy D, Morton CC et al. Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res 2004; 64: 8249–8255.

    Article  CAS  Google Scholar 

  37. Guo N, Krutzsch HC, Inman JK, Roberts DD . Thrombospondin 1 and type I repeat peptides of thrombospondin 1 specifically induce apoptosis of endothelial cells. Cancer Res 1997; 57: 1735–1742.

    CAS  Google Scholar 

  38. Yamauchi M, Imajoh-Ohmi S, Shibuya M . Novel antiangiogenic pathway of thrombospondin-1 mediated by suppression of the cell cycle. Cancer Sci 2007; 98: 1491–1497.

    Article  CAS  Google Scholar 

  39. Zaslavsky A, Chen C, Grillo J, Baek KH, Holmgren L, Yoon SS et al. Regional control of tumor growth. Mol Cancer Res 2010; 8: 1198–1206.

    Article  CAS  Google Scholar 

  40. De Fraipont F, Nicholson AC, Feige JJ, Van Meir EG . Thrombospondins and tumor angiogenesis. Trends Mol Med 2001; 7: 401–407.

    Article  CAS  Google Scholar 

  41. Osawa T, Muramatsu M, Watanabe M, Shibuya M . Hypoxia and low-nutrition double stress induces aggressiveness in a murine model of melanoma. Cancer Sci 2009; 100: 844–851.

    Article  CAS  Google Scholar 

  42. Muramatsu M, Yamamoto S, Osawa T, Shibuya M . Vascular endothelial growth factor receptor-1 signaling promotes mobilization of macrophage lineage cells from bone marrow and stimulates solid tumor growth. Cancer Res 2010; 70: 8211–8221.

    Article  CAS  Google Scholar 

  43. Ferrara N, Kerbel RS . Angiogenesis as a therapeutic target. Nature 2005; 438: 967–974.

    Article  CAS  Google Scholar 

  44. Wang F, Yamauchi M, Muramatsu M, Osawa T, Tsuchida R, Shibuya M . RACK1 regulates VEGF/Flt1-mediated cell migration via activation of a PI3K/Akt pathway. J Biol Chem 2011; 286: 9097–9106.

    Article  CAS  Google Scholar 

  45. Gee MF, Tsuchida R, Eichler-Jonsson C, Das B, Baruchel S, Malkin D . Vascular endothelial growth factor acts in an autocrine manner in rhabdomyosarcoma cell lines and can be inhibited with all-trans-retinoic acid. Oncogene 2005; 24: 8025–8037.

    Article  CAS  Google Scholar 

  46. Jain RK . Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005; 307: 58–62.

    Article  CAS  Google Scholar 

  47. Moreno-Miralles I, Ren R, Moser M, Hartnett ME, Patterson C . Bone morphogenetic protein endothelial cell precursor-derived regulator regulates retinal angiogenesis in vivo in a mouse model of oxygen-induced retinopathy. Arterioscler Thromb Vasc Biol 2011; 31: 2216–2222.

    Article  CAS  Google Scholar 

  48. Zhou Q, Heinke J, Vargas A, Winnik S, Krauss T, Bode C et al. ERK signaling is a central regulator for BMP-4 dependent capillary sprouting. Cardiovasc Res 2007; 76: 390–399.

    Article  CAS  Google Scholar 

  49. Giuriato S, Ryeom S, Fan AC, Bachireddy P, Lynch RC, Rioth MJ et al. Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch. Proc Natl Acad Sci USA 2006; 103: 16266–16271.

    Article  CAS  Google Scholar 

  50. Kozaki K, Miyaishi O, Tsukamoto T, Tatematsu Y, Hida T, Takahashi T . Establishment and characterization of a human lung cancer cell line NCI-H460-LNM35 with consistent lymphogenous metastasis via both subcutaneous and orthotopic propagation. Cancer Res 2000; 60: 2535–2540.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Takashi Koda and Ms Kiyomi Kaneki for assisting in analysis of microarray data, Mr Daichi Yamanaka for operating of FACS sorting and Ms Shigeko Shimizu for preparing of immunohistochemistry. RT is a Research Fellow of the Japan Society of the Promotion of Science. This work was supported by the Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists (22-400024), Grant-in-Aid for Young Scientist (23701047), Grant-in-Aid for Scientific Research on Innovative Areas (24116509), the Takeda Science Foundation and a Grant-in-Aid Special Project Research on Cancer-Bioscience (17014020) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R Tsuchida or M Shibuya.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author contributions

RT, TO and MS designed the research; RT, TO, FW, RN, ST, MM, TT, TI and YW performed the experiments; RT, TO, BD and MS analyzed the data and wrote the paper; and TM and YY provided valuable help.

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuchida, R., Osawa, T., Wang, F. et al. BMP4/Thrombospondin-1 loop paracrinically inhibits tumor angiogenesis and suppresses the growth of solid tumors. Oncogene 33, 3803–3811 (2014). https://doi.org/10.1038/onc.2013.358

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.358

Keywords

This article is cited by

Search

Quick links