Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Aberrantly activated AREG–EGFR signaling is required for the growth and survival of CRTC1–MAML2 fusion-positive mucoepidermoid carcinoma cells

Abstract

Salivary gland tumors (SGT) are a group of highly heterogeneous head and neck malignancies with widely varied clinical outcomes and no standard effective treatments. The CRTC1–MAML2 fusion oncogene, encoded by a recurring chromosomal translocation t(11;19)(q14-21;p12-13), is a frequent genetic alteration found in >50% of mucoepidermoid carcinomas (MEC), the most common malignant SGT. In this study, we aimed to define the role of the CRTC1–MAML2 oncogene in the maintenance of MEC tumor growth and to investigate critical downstream target genes and pathways for therapeutic targeting of MEC. By performing gene expression analyses and functional studies via RNA interference and pharmacological modulation, we determined the importance of the CRTC1–MAML2 fusion gene and its downstream AREG–EGFR signaling in human MEC cancer cell growth and survival in vitro and in vivo using human MEC xenograft models. We found that CRTC1–MAML2 fusion oncogene was required for the growth and survival of fusion-positive human MEC cancer cells in vitro and in vivo. The CRTC1–MAML2 oncoprotein induced the upregulation of the epidermal growth factor receptor (EGFR) ligand Amphiregulin (AREG) by co-activating the transcription factor CREB, and AREG subsequently activated EGFR signaling in an autocrine manner that promoted MEC cell growth and survival. Importantly, CRTC1–MAML2-positive MEC cells were highly sensitive to EGFR signaling inhibition. Therefore, our study revealed that aberrantly activated AREG–EGFR signaling is required for CRTC1–MAML2-positive MEC cell growth and survival, suggesting that EGFR-targeted therapies will benefit patients with advanced, unresectable CRTC1–MAML2-positive MEC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Eveson JW . Salivary tumours. Periodontol 2000 2011; 57: 150–159.

    Article  Google Scholar 

  2. Bell D, Hanna EY . Salivary gland cancers: biology and molecular targets for therapy. Curr Oncol Rep 2012; 14: 166–174.

    Article  CAS  Google Scholar 

  3. Stenman G . Fusion oncogenes and tumor type specificity—insights from salivary gland tumors. Semin Cancer Biol 2005; 15: 224–235.

    Article  CAS  Google Scholar 

  4. Persson M, Andren Y, Mark J, Horlings HM, Persson F, Stenman G . Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc Natl Acad Sci USA 2009; 106: 18740–18744.

    Article  CAS  Google Scholar 

  5. O’Neill ID . New insights into the nature of Warthin’s tumour. J Oral Pathol Med 2009; 38: 145–149.

    Article  Google Scholar 

  6. O’Neill ID . t(11;19) translocation and CRTC1-MAML2 fusion oncogene in mucoepidermoid carcinoma. Oral Oncol 2009; 45: 2–9.

    Article  Google Scholar 

  7. Behboudi A, Enlund F, Winnes M, Andren Y, Nordkvist A, Leivo I et al. Molecular classification of mucoepidermoid carcinomas-prognostic significance of the MECT1-MAML2 fusion oncogene. Genes Chromosomes Cancer 2006; 45: 470–481.

    Article  CAS  Google Scholar 

  8. Enlund F, Behboudi A, Andren Y, Oberg C, Lendahl U, Mark J et al. Altered Notch signaling resulting from expression of a WAMTP1-MAML2 gene fusion in mucoepidermoid carcinomas and benign Warthin’s tumors. Exp Cell Res 2004; 292: 21–28.

    Article  CAS  Google Scholar 

  9. Tonon G, Modi S, Wu L, Kubo A, Coxon AB, Komiya T et al. t(11;19)(q21;p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a Notch signaling pathway. Nat Genet 2003; 33: 208–213.

    Article  CAS  Google Scholar 

  10. Kumar V, Abbas A, Fausto N . Robbins & Cotran Pathologic Basis of Disease 7th edn Elsevier, Saunders, 2005.

    Google Scholar 

  11. Seethala RR, Dacic S, Cieply K, Kelly LM, Nikiforova MN . A reappraisal of the MECT1/MAML2 translocation in salivary mucoepidermoid carcinomas. Am J Surg Pathol 2010; 34: 1106–1121.

    Article  Google Scholar 

  12. Chiosea SI, Dacic S, Nikiforova MN, Seethala RR . Prospective testing of mucoepidermoid carcinoma for the MAML2 translocation: clinical implications. Laryngoscope 2012; 122: 1690–1694.

    Article  CAS  Google Scholar 

  13. Fehr A, Roser K, Belge G, Loning T, Bullerdiek J . A closer look at Warthin tumors and the t(11;19). Cancer Genet Cytogenet 2008; 180: 135–139.

    Article  CAS  Google Scholar 

  14. Wu L, Liu J, Gao P, Nakamura M, Cao Y, Shen H et al. Transforming activity of MECT1-MAML2 fusion oncoprotein is mediated by constitutive CREB activation. EMBO J 2005; 24: 2391–2402.

    Article  CAS  Google Scholar 

  15. Iourgenko V, Zhang W, Mickanin C, Daly I, Jiang C, Hexham JM et al. Identification of a family of cAMP response element-binding protein coactivators by genome-scale functional analysis in mammalian cells. Proc Natl Acad Sci USA 2003; 100: 12147–12152.

    Article  CAS  Google Scholar 

  16. Conkright MD, Canettieri G, Screaton R, Guzman E, Miraglia L, Hogenesch JB et al. TORCs: transducers of regulated CREB activity. Mol Cell 2003; 12: 413–423.

    Article  CAS  Google Scholar 

  17. Komiya T, Coxon A, Park Y, Chen WD, Zajac-Kaye M, Meltzer P et al. Enhanced activity of the CREB co-activator Crtc1 in LKB1 null lung cancer. Oncogene 2010; 29: 1672–1680.

    Article  CAS  Google Scholar 

  18. Altarejos JY, Montminy M . CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 2011; 12: 141–151.

    Article  CAS  Google Scholar 

  19. Gu Y, Lin S, Li JL, Nakagawa H, Chen Z, Jin B et al. Altered LKB1/CREB-regulated transcription co-activator (CRTC) signaling axis promotes esophageal cancer cell migration and invasion. Oncogene 2012; 31: 469–479.

    Article  CAS  Google Scholar 

  20. Wu L, Sun T, Kobayashi K, Gao P, Griffin JD . Identification of a family of mastermind-like transcriptional coactivators for mammalian notch receptors. Mol Cell Biol 2002; 22: 7688–7700.

    Article  CAS  Google Scholar 

  21. McElhinny AS, Li JL, Wu L . Mastermind-like transcriptional co-activators: emerging roles in regulating cross talk among multiple signaling pathways. Oncogene 2008; 27: 5138–5147.

    Article  CAS  Google Scholar 

  22. Coxon A, Rozenblum E, Park YS, Joshi N, Tsurutani J, Dennis PA et al. Mect1-Maml2 fusion oncogene linked to the aberrant activation of cyclic AMP/CREB regulated genes. Cancer Res 2005; 65: 7137–7144.

    Article  CAS  Google Scholar 

  23. Komiya T, Park Y, Modi S, Coxon AB, Oh H, Kaye FJ . Sustained expression of Mect1-Maml2 is essential for tumor cell growth in salivary gland cancers carrying the t(11;19) translocation. Oncogene 2006; 25: 6128–6132.

    Article  CAS  Google Scholar 

  24. Canettieri G, Coni S, Della Guardia M, Nocerino V, Antonucci L, Di Magno L et al. The coactivator CRTC1 promotes cell proliferation and transformation via AP-1. Proc Natl Acad Sci USA 2009; 106: 1445–1450.

    Article  CAS  Google Scholar 

  25. Busser B, Sancey L, Brambilla E, Coll JL, Hurbin A . The multiple roles of amphiregulin in human cancer. Biochim Biophys Acta 2011; 1816: 119–131.

    CAS  Google Scholar 

  26. Grisanti S, Amoroso V, Buglione M, Rosati A, Gatta R, Pizzocaro C et al. Cetuximab in the treatment of metastatic mucoepidermoid carcinoma of the salivary glands: a case report and review of literature. J Med Case Reports 2008; 2: 320.

    Article  Google Scholar 

  27. Han SW, Kim HP, Jeon YK, Oh DY, Lee SH, Kim DW et al. Mucoepidermoid carcinoma of lung: potential target of EGFR-directed treatment. Lung Cancer 2008; 61: 30–34.

    Article  Google Scholar 

  28. O’Neill ID . Gefitinib as targeted therapy for mucoepidermoid carcinoma of the lung: possible significance of CRTC1-MAML2 oncogene. Lung Cancer 2009; 64: 129–130.

    Article  Google Scholar 

  29. Lujan B, Hakim S, Moyano S, Nadal A, Caballero M, Diaz A et al. Activation of the EGFR/ERK pathway in high-grade mucoepidermoid carcinomas of the salivary glands. Br J Cancer 2010; 103: 510–516.

    Article  CAS  Google Scholar 

  30. Anzick SL, Chen WD, Park Y, Meltzer P, Bell D, El-Naggar AK et al. Unfavorable prognosis of CRTC1-MAML2 positive mucoepidermoid tumors with CDKN2A deletions. Genes Chromosomes Cancer 2010; 49: 59–69.

    Article  CAS  Google Scholar 

  31. Yonesaka K, Zejnullahu K, Lindeman N, Homes AJ, Jackman DM, Zhao F et al. Autocrine production of amphiregulin predicts sensitivity to both gefitinib and cetuximab in EGFR wild-type cancers. Clin Cancer Res 2008; 14: 6963–6973.

    Article  CAS  Google Scholar 

  32. Raben D, Helfrich B, Chan DC, Ciardiello F, Zhao L, Franklin W et al. The effects of cetuximab alone and in combination with radiation and/or chemotherapy in lung cancer. Clin Cancer Res 2005; 11: 795–805.

    CAS  Google Scholar 

  33. Steiner P, Joynes C, Bassi R, Wang S, Tonra JR, Hadari YR et al. Tumor growth inhibition with cetuximab and chemotherapy in non-small cell lung cancer xenografts expressing wild-type and mutated epidermal growth factor receptor. Clin Cancer Res 2007; 13: 1540–1551.

    Article  CAS  Google Scholar 

  34. Wu L, Aster JC, Blacklow SC, Lake R, Artavanis-Tsakonas S, Griffin JD . MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet 2000; 26: 484–489.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Marda Jorgensen for helping with immunohistochemical staining, Mei Zhang for helping with FACS analysis, and the Salivary Gland Tumor Biorepository (SGTB) for providing tumor specimens for this study. L Wu was supported by the University of Florida Shands Cancer Center Startup fund, Bankhead Coley Cancer Research Program, and the V foundation for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Wu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Chen, J., Gu, Y. et al. Aberrantly activated AREG–EGFR signaling is required for the growth and survival of CRTC1–MAML2 fusion-positive mucoepidermoid carcinoma cells. Oncogene 33, 3869–3877 (2014). https://doi.org/10.1038/onc.2013.348

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.348

Keywords

This article is cited by

Search

Quick links