Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The role of miR-150 in normal and malignant hematopoiesis

Abstract

MicroRNAs are a class of small non-coding RNAs that have been implicated to mediate gene regulation in virtually all important biological processes. Recently there is accumulating evidence showing that miR-150 has essential regulatory roles in both normal and malignant hematopoiesis and holds great potential as a therapeutic target in treating various types of hematopoietic malignancies. The purpose of this review is to summarize our current knowledge about the expression patterns, biological functions and regulatory mechanisms of miR-150 in normal and malignant hematopoiesis, and to highlight the important questions to be answered in this burgeoning field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Siomi H, Siomi MC . Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 2010; 38: 323–332.

    Article  CAS  PubMed  Google Scholar 

  3. He L, Hannon GJ . MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5: 522–531.

    Article  CAS  PubMed  Google Scholar 

  4. Xiao C, Rajewsky K . MicroRNA control in the immune system: basic principles. Cell 2009; 136: 26–36.

    Article  CAS  PubMed  Google Scholar 

  5. Newman MA, Hammond SM . Emerging paradigms of regulated microRNA processing. Genes Dev 2010; 24: 1086–1092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen CZ, Li L, Lodish HF, Bartel DP . MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303: 83–86.

    Article  CAS  PubMed  Google Scholar 

  7. Orkin SH, Zon LI . Hematopoiesis: an evolving paradigm for stem cell biology. Cell 2008; 132: 631–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rowley JD . Chromosomal translocations: revisited yet again. Blood 2008; 112: 2183–2189.

    Article  CAS  PubMed  Google Scholar 

  9. Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med 2012; 366: 1079–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mullighan CG, Downing JR . Global genomic characterization of acute lymphoblastic leukemia. Semin Hematol 2009; 46: 3–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ntziachristos P, Mullenders J, Trimarchi T, Aifantis I . Mechanisms of epigenetic regulation of leukemia onset and progression. Adv Immunol 2013; 117: 1–38.

    Article  CAS  PubMed  Google Scholar 

  12. Chen J, Odenike O, Rowley JD . Leukaemogenesis: more than mutant genes. Nat Rev Cancer 2010; 10: 23–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Garzon R, Croce CM . MicroRNAs in normal and malignant hematopoiesis. Curr Opin Hematol 2008; 15: 352–358.

    Article  CAS  PubMed  Google Scholar 

  14. Marcucci G, Radmacher MD, Mrozek K, Bloomfield CD . MicroRNA expression in acute myeloid leukemia. Curr Hematol Malig Rep 2009; 4: 83–88.

    Article  PubMed  Google Scholar 

  15. Marcucci G, Mrozek K, Radmacher MD, Garzon R, Bloomfield CD . The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood 2011; 117: 1121–1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lawrie CH . MicroRNAs and lymphomagenesis: a functional review. Br J Haematol 2013; 160: 571–581.

    Article  CAS  PubMed  Google Scholar 

  17. Fang J, Varney M, Starczynowski DT . Implication of microRNAs in the pathogenesis of MDS. Curr Pharm Des 2012; 18: 3170–3179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Monticelli S, Ansel KM, Xiao C, Socci ND, Krichevsky AM, Thai TH et al. MicroRNA profiling of the murine hematopoietic system. Genome Biol 2005; 6: R71.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bender TP, Kremer CS, Kraus M, Buch T, Rajewsky K . Critical functions for c-Myb at three checkpoints during thymocyte development. Nat Immunol 2004; 5: 721–729.

    Article  CAS  PubMed  Google Scholar 

  20. Thomas MD, Kremer CS, Ravichandran KS, Rajewsky K, Bender TP . c-Myb is critical for B cell development and maintenance of follicular B cells. Immunity 2005; 23: 275–286.

    Article  CAS  PubMed  Google Scholar 

  21. Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 2007; 131: 146–159.

    Article  CAS  PubMed  Google Scholar 

  22. Zhou B, Wang S, Mayr C, Bartel DP, Lodish HF . miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci USA 2007; 104: 7080–7085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ghisi M, Corradin A, Basso K, Frasson C, Serafin V, Mukherjee S et al. Modulation of microRNA expression in human T-cell development: targeting of NOTCH3 by miR-150. Blood 2011; 117: 7053–7062.

    Article  CAS  PubMed  Google Scholar 

  24. Kondo M, Weissman IL, Akashi K . Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 1997; 91: 661–672.

    Article  CAS  PubMed  Google Scholar 

  25. Bezman NA, Chakraborty T, Bender T, Lanier LL . miR-150 regulates the development of NK and iNKT cells. J Exp Med 2011; 208: 2717–2731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zheng Q, Zhou L, Mi QS . MicroRNA miR-150 is involved in Valpha14 invariant NKT cell development and function. J Immunol 2012; 188: 2118–2126.

    Article  CAS  PubMed  Google Scholar 

  27. Emambokus N, Vegiopoulos A, Harman B, Jenkinson E, Anderson G, Frampton J . Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO J 2003; 22: 4478–4488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vegiopoulos A, Garcia P, Emambokus N, Frampton J . Coordination of erythropoiesis by the transcription factor c-Myb. Blood 2006; 107: 4703–4710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bruchova H, Yoon D, Agarwal AM, Mendell J, Prchal JT . Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. Exp Hematol 2007; 35: 1657–1667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu J, Guo S, Ebert BL, Zhang H, Peng X, Bosco J et al. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell 2008; 14: 843–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barroga CF, Pham H, Kaushansky K . Thrombopoietin regulates c-Myb expression by modulating micro RNA 150 expression. Exp Hematol 2008; 36: 1585–1592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, Probin V, Zhou D . Cancer therapy-induced residual bone marrow injury-Mechanisms of induction and implication for therapy. Curr Cancer Ther Rev 2006; 2: 271–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Adams BD, Guo S, Bai H, Guo Y, Megyola CM, Cheng J et al. An in vivo functional screen uncovers miR-150-mediated regulation of hematopoietic injury response. Cell Rep 2012; 2: 1048–1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hussein K, Theophile K, Busche G, Schlegelberger B, Gohring G, Kreipe H et al. Significant inverse correlation of microRNA-150/MYB and microRNA-222/p27 in myelodysplastic syndrome. Leuk Res 2010; 34: 328–334.

    Article  CAS  PubMed  Google Scholar 

  35. Fulci V, Chiaretti S, Goldoni M, Azzalin G, Carucci N, Tavolaro S et al. Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood 2007; 109: 4944–4951.

    Article  CAS  PubMed  Google Scholar 

  36. Moussay E, Wang K, Cho JH, van Moer K, Pierson S, Paggetti J et al. MicroRNA as biomarkers and regulators in B-cell chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2011; 108: 6573–6578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang M, Tan LP, Dijkstra MK, van Lom K, Robertus JL, Harms G et al. miRNA analysis in B-cell chronic lymphocytic leukaemia: proliferation centres characterized by low miR-150 and high BIC/miR-155 expression. J Pathol 2008; 215: 13–20.

    Article  CAS  PubMed  Google Scholar 

  38. Agirre X, Jimenez-Velasco A, San Jose-Eneriz E, Garate L, Bandres E, Cordeu L et al. Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34+ cells increases USF2-mediated cell growth. Mol Cancer Res 2008; 6: 1830–1840.

    Article  CAS  PubMed  Google Scholar 

  39. Machova Polakova K, Lopotova T, Klamova H, Burda P, Trneny M, Stopka T et al. Expression patterns of microRNAs associated with CML phases and their disease related targets. Mol Cancer 2011; 10: 41.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zanette DL, Rivadavia F, Molfetta GA, Barbuzano FG, Proto-Siqueira R, Silva-Jr WA et al. miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res 2007; 40: 1435–1440.

    Article  CAS  PubMed  Google Scholar 

  41. Schotte D, Chau JC, Sylvester G, Liu G, Chen C, van der Velden VH et al. Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia 2009; 23: 313–322.

    Article  CAS  PubMed  Google Scholar 

  42. Wang Y, Li Z, He C, Wang D, Yuan X, Chen J et al. MicroRNAs expression signatures are associated with lineage and survival in acute leukemias. Blood Cells Mol Dis 2010; 44: 191–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang H, Luo XQ, Zhang P, Huang LB, Zheng YS, Wu J et al. MicroRNA patterns associated with clinical prognostic parameters and CNS relapse prediction in pediatric acute leukemia. PLoS One 2009; 4: e7826.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xu L, Liang YN, Luo XQ, Liu XD, Guo HX . Association of miRNAs expression profiles with prognosis and relapse in childhood acute lymphoblastic leukemia. Zhonghua Xue Ye Xue Za Zhi 2011; 32: 178–181.

    PubMed  Google Scholar 

  45. Jiang X, Huang H, Li Z, Li Y, Wang X, Gurbuxani S et al. Blockade of miR-150 maturation by MLL-fusion/MYC/LIN-28 is required for MLL-associated leukemia. Cancer Cell 2012; 22: 524–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fayyad-Kazan H, Bitar N, Najar M, Lewalle P, Fayyad-Kazan M, Badran R et al. Circulating miR-150 and miR-342 in plasma are novel potential biomarkers for acute myeloid leukemia. J Transl Med 2013; 11: 31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Behm FG, Raimondi SC, Frestedt JL, Liu Q, Crist WM, Downing JR et al. Rearrangement of the MLL gene confers a poor prognosis in childhood acute lymphoblastic leukemia, regardless of presenting age. Blood 1996; 87: 2870–2877.

    CAS  PubMed  Google Scholar 

  48. Krivtsov AV, Armstrong SA . MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 2007; 7: 823–833.

    Article  CAS  PubMed  Google Scholar 

  49. Faber J, Krivtsov AV, Stubbs MC, Wright R, Davis TN, van den Heuvel-Eibrink M et al. HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood 2009; 113: 2375–2385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zeisig BB, Milne T, Garcia-Cuellar MP, Schreiner S, Martin ME, Fuchs U et al. Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization. Mol Cell Biol 2004; 24: 617–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Popovic R, Riesbeck LE, Velu CS, Chaubey A, Zhang J, Achille NJ et al. Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood 2009; 113: 3314–3322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mi S, Li Z, Chen P, He C, Cao D, Elkahloun A et al. Aberrant overexpression and function of the miR-17-92 cluster in MLL-rearranged acute leukemia. Proc Natl Acad Sci USA 2010; 107: 3710–3715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li Z, Huang H, Chen P, He M, Li Y, Arnovitz S et al. miR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia. Nat Commun 2012; 2: 688.

    Article  Google Scholar 

  54. Chang TC, Zeitels LR, Hwang HW, Chivukula RR, Wentzel EA, Dews M et al. Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proc Natl Acad Sci USA 2009; 106: 3384–3389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 2008; 40: 43–50.

    Article  CAS  PubMed  Google Scholar 

  56. Zuber J, Rappaport AR, Luo W, Wang E, Chen C, Vaseva AV et al. An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance. Genes Dev 2011; 25: 1628–1640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bousquet M, Zhuang G, Meng C, Ying W, Cheruku PS, Shie AT et al. MiR-150 blocks MLL-AF9 associated leukemia by repressing multiple oncogenes. Mol Cancer Res (e-pub ahead of print 19 April 2013; doi:10.1158/1541-7786.MCR-13-0002-T).

    Article  CAS  PubMed  Google Scholar 

  58. Zhao JJ, Lin J, Lwin T, Yang H, Guo J, Kong W et al. microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood 2010; 115: 2630–2639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cai J, Liu X, Cheng J, Li Y, Huang X, Ma X et al. MicroRNA-200 is commonly repressed in conjunctival MALT lymphoma, and targets cyclin E2. Graefes Arch Clin Exp Ophthalmol 2012; 250: 523–531.

    Article  CAS  PubMed  Google Scholar 

  60. Gibcus JH, Tan LP, Harms G, Schakel RN, de Jong D, Blokzijl T et al. Hodgkin lymphoma cell lines are characterized by a specific miRNA expression profile. Neoplasia 2009; 11: 167–176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen S, Wang Z, Dai X, Pan J, Ge J, Han X et al. Re-expression of microRNA-150 induces EBV-positive Burkitt lymphoma differentiation by modulating c-Myb in vitro. Cancer Sci 2013; 104: 826–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Watanabe A, Tagawa H, Yamashita J, Teshima K, Nara M, Iwamoto K et al. The role of microRNA-150 as a tumor suppressor in malignant lymphoma. Leukemia 2011; 25: 1324–1334.

    Article  CAS  PubMed  Google Scholar 

  63. Guo Y, Niu C, Breslin P, Tang M, Zhang S, Wei W et al. c-Myc-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Blood 2009; 114: 2097–2106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jiang X, Chen J . miR-150:targeting MLL leukemia. Oncotarget 2012; 3: 1268–1269.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Muntean AG, Hess JL . The pathogenesis of mixed-lineage leukemia. Annu Rev Pathol 2012; 7: 283–301.

    Article  CAS  PubMed  Google Scholar 

  66. Hemann MT, Bric A, Teruya-Feldstein J, Herbst A, Nilsson JA, Cordon-Cardo C et al. Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 2005; 436: 807–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang J, Xie LY, Allan S, Beach D, Hannon GJ . Myc activates telomerase. Genes Dev 1998; 12: 1769–1774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health (NIH) R01 grant CA127277 (JC), American Cancer Society (ACS) Research Scholar grant (JC), The University of Chicago Committee on Cancer Biology (CCB) Fellowship Program (YH; XJ), and Gabrielle’s Angel Foundation for Cancer Research (JC; XJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Jiang, X. & Chen, J. The role of miR-150 in normal and malignant hematopoiesis. Oncogene 33, 3887–3893 (2014). https://doi.org/10.1038/onc.2013.346

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.346

Keywords

This article is cited by

Search

Quick links