Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

miR-137 regulates the constitutive androstane receptor and modulates doxorubicin sensitivity in parental and doxorubicin-resistant neuroblastoma cells

Abstract

Chemotherapy is the most common treatment for cancer. However, multidrug resistance (MDR) remains a major obstacle to effective chemotherapy, limiting the efficacy of both conventional chemotherapeutic and novel biologic agents. The constitutive androstane receptor (CAR), a xenosensor, is a key regulator of MDR. It functions in xenobiotic detoxification by regulating the expression of phase I drug-metabolizing enzymes and ATP-binding cassette (ABC) transporters, whose overexpression in cancers and whose role in drug resistance make them potential therapeutic targets for reducing MDR. MicroRNAs (miRNAs) are endogenous negative regulators of gene expression and have been implicated in most cellular processes, including drug resistance. Here, we report the inversely related expression of miR-137 and CAR in parental and doxorubicin-resistant neuroblastoma cells, wherein miR-137 is downregulated in resistant cells. miR-137 overexpression resulted in downregulation of CAR protein and mRNA (via mRNA degradation); it sensitized doxorubicin-resistant cells to doxorubicin (as shown by reduced proliferation, increased apoptosis and increased G2-phase cell cycle arrest) and reduced the in vivo growth rate of neuroblastoma xenografts. We observed similar results in cellular models of hepatocellular and colon cancers, indicating that the doxorubicin-sensitizing effect of miR-137 is not tumor type-specific. Finally, we show for the first time a negative feedback loop whereby miR-137 downregulates CAR expression and CAR downregulates miR-137 expression. Hypermethylation of the miR-137 promoter and negative regulation of miR-137 by CAR contribute in part to reduced miR-137 expression and increased CAR and MDR1 expression in doxorubicin-resistant neuroblastoma cells. These findings demonstrate that miR-137 is a crucial regulator of cancer response to doxorubicin treatment, and they identify miR-137 as a highly promising target to reduce CAR-driven doxorubicin resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chen Y, Tang Y, Guo C, Wang J, Boral D, Nie D . Nuclear receptors in the multidrug resistance through the regulation of drug-metabolizing enzymes and drug transporters. Biochem Pharmacol 2012; 83: 1112–1126.

    Article  CAS  Google Scholar 

  2. Zhang J, Huang W, Chua SS, Wei P, Moore DD . Modulation of acetaminophen-induced hepatotoxicity by the xenobiotic receptor CAR. Science 2002; 298: 422–424.

    Article  CAS  Google Scholar 

  3. Fojo T . Multiple paths to a drug resistance phenotype: mutations, translocations, deletions and amplification of coding genes or promoter regions, epigenetic changes and microRNAs. Drug Resist Updat 2007; 10: 59–67.

    Article  CAS  Google Scholar 

  4. He L, Hannon GJ . MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5: 522–531.

    Article  CAS  Google Scholar 

  5. Ambros V . The functions of animal microRNAs. Nature 2004; 431: 350–355.

    Article  CAS  Google Scholar 

  6. Brennecke J, Cohen S . Towards a complete description of the microRNA complement of animal genomes. Genome Biol 2003; 4: 228.

    Article  Google Scholar 

  7. Fabbri M, Croce CM . Role of microRNAs in lymphoid biology and disease. Curr Opin Hematol 2011; 18: 266–272.

    Article  CAS  Google Scholar 

  8. Blower PE, Chung JH, Verducci JS, Lin S, Park JK, Dai Z et al. MicroRNAs modulate the chemosensitivity of tumor cells. Mol Cancer Ther 2008; 7: 1–9.

    Article  CAS  Google Scholar 

  9. Passetti F, Ferreira CG, Costa FF . The impact of microRNAs and alternative splicing in pharmacogenomics. Pharmacogenomics J 2009; 9: 1–13.

    Article  CAS  Google Scholar 

  10. Moitra K, Im K, Limpert K, Borsa A, Sawitzke J, Robey R et al. Differential gene and MicroRNA expression between etoposide resistant and etoposide sensitive MCF7 breast cancer cell lines. PLoS One 2012; 7: e45268.

    Article  CAS  Google Scholar 

  11. Haenisch S, Cascorbi I . miRNAs as mediators of drug resistance. Epigenomics 2012; 4: 369–381.

    Article  CAS  Google Scholar 

  12. Hodzic J, Giovannetti E, Calvo BD, Adema AD, Peters GJ . Regulation of deoxycytidine kinase expression and sensitivity to gemcitabine by micro-RNA 330 and promoter methylation in cancer cells. Nucleosides Nucleotides Nucleic Acids 2011; 30: 1214–1222.

    Article  CAS  Google Scholar 

  13. van Jaarsveld MT, Helleman J, Boersma AW, van Kuijk PF, van Ijcken WF, Despierre E et al. miR-141 regulates KEAP1 and modulates cisplatin sensitivity in ovarian cancer cells. Oncogene 2012 doi:10.1038/onc.2012.433 1–10.

    Article  Google Scholar 

  14. Brodeur GM . Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 2003; 3: 203–216.

    Article  CAS  Google Scholar 

  15. Manohar CF, Bray JA, Salwen HR, Madafiglio J, Cheng A, Flemming C et al. MYCN-mediated regulation of the MRP1 promoter in human neuroblastoma. Oncogene 2004; 23: 753–762.

    Article  CAS  Google Scholar 

  16. Porro A, Chrochemore C, Cambuli F, Iraci N, Contestabile A, Perini G . Nitric oxide control of MYCN expression and multi drug resistance genes in tumours of neural origin. Curr Pharm Des 2010; 16: 431–439.

    Article  CAS  Google Scholar 

  17. Porro A, Haber M, Diolaiti D, Iraci N, Henderson M, Gherardi S et al. Direct and coordinate regulation of ATP-binding cassette transporter genes by Myc factors generates specific transcription signatures that significantly affect the chemoresistance phenotype of cancer cells. J Biol Chem 2010; 285: 19532–19543.

    Article  CAS  Google Scholar 

  18. Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA et al. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 2000; 6: 529–535.

    Article  CAS  Google Scholar 

  19. Charlet J, Schnekenburger M, Brown KW, Diederich M . DNA demethylation increases sensitivity of neuroblastoma cells to chemotherapeutic drugs. Biochem Pharmacol 2012; 83: 858–865.

    Article  CAS  Google Scholar 

  20. Bray I, Bryan K, Prenter S, Buckley PG, Foley NH, Murphy DM et al. Widespread dysregulation of MiRNAs by MYCN amplification and chromosomal imbalances in neuroblastoma: association of miRNA expression with survival. PLoS One 2009; 4: e7850–e7860.

    Article  Google Scholar 

  21. Chen Y, Stallings RL . Differential patterns of MicroRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res 2007; 67: 976–983.

    Article  CAS  Google Scholar 

  22. Buckley PG, Alcock L, Bryan K, Bray I, Schulte JH, Schramm A et al. Chromosomal and microRNA expression patterns reveal biologically distinct subgroups of 11q− neuroblastoma. Clin Cancer Res 2010; 16: 2971–2978.

    Article  CAS  Google Scholar 

  23. Schulte JH, Schowe B, Mestdagh P, Kaderali L, Kalaghatgi P, Schlierf S et al. Accurate prediction of neuroblastoma outcome based on miRNA expression profiles. Int J Cancer 2010; 127: 2374–2385.

    Article  CAS  Google Scholar 

  24. Balaguer F, Link A, Lozano JJ, Cuatrecasas M, Nagasaka T, Boland CR et al. Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res 2010; 70: 6609–6618.

    Article  CAS  Google Scholar 

  25. Bandres E, Agirre X, Bitarte N, Ramirez N, Zarate R, Roman-Gomez J et al. Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer 2009; 125: 2737–2743.

    Article  CAS  Google Scholar 

  26. Chen Q, Chen X, Zhang M, Fan Q, Luo S, Cao X . miR-137 is frequently down-regulated in gastric cancer and is a negative regulator of Cdc42. Dig Dis Sci 2011; 56: 2009–2016.

    Article  CAS  Google Scholar 

  27. Kozaki K-i Imoto I, Mogi S, Omura K, Inazawa J . Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res 2008; 68: 2094–2105.

    Article  Google Scholar 

  28. Langevin SM, Stone RA, Bunker CH, Lyons-Weiler MA, LaFramboise WA, Kelly L et al. MicroRNA-137 promoter methylation is associated with poorer overall survival in patients with squamous cell carcinoma of the head and neck. Cancer 2011; 117: 1454–1462.

    Article  CAS  Google Scholar 

  29. Cinatl J, Vogel J-U, Cinatl J, Weber B, Rabenau H, Novak M et al. Long-term productive human cytomegalovirus infection of a human neuroblastoma cell line. Int J Cancer 1996; 65: 90–96.

    Article  Google Scholar 

  30. Michaelis M, Rothweiler F, Klassert D, von Deimling A, Weber K, Fehse B et al. Reversal of P-glycoprotein-mediated multidrug resistance by the murine double minute 2 antagonist nutlin-3. Cancer Res 2009; 69: 416–421.

    Article  CAS  Google Scholar 

  31. Li Y, Wang Q, Yao X, Li Y . Induction of CYP3A4 and MDR1 gene expression by baicalin, baicalein, chlorogenic acid, and ginsenoside Rf through constitutive androstane receptor- and pregnane X receptor-mediated pathways. Eur J Pharmacol 2010; 640: 46–54.

    Article  CAS  Google Scholar 

  32. Faucette SR, Sueyoshi T, Smith CM, Negishi M, LeCluyse EL, Wang H . Differential regulation of hepatic CYP2B6 and CYP3A4 genes by constitutive androstane receptor but not pregnane X receptor. J Pharmacol Exp Ther 2006; 317: 1200–1209.

    Article  CAS  Google Scholar 

  33. Baskin-Bey ES, Huang W, Ishimura N, Isomoto H, Bronk SF, Braley K et al. Constitutive androstane receptor (CAR) ligand, TCPOBOP, attenuates Fas-induced murine liver injury by altering Bcl-2 proteins. Hepatology 2006; 44: 252–262.

    Article  CAS  Google Scholar 

  34. Ji M, Li J, Yu H, Ma D, Ye J, Sun X et al. Simultaneous targeting of MCL1 and ABCB1 as a novel strategy to overcome drug resistance in human leukaemia. Br J Haematol 2009; 145: 648–656.

    Article  CAS  Google Scholar 

  35. Wertz IE, Kusam S, Lam C, Okamoto T, Sandoval W, Anderson DJ et al. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature 2011; 471: 110–114.

    Article  CAS  Google Scholar 

  36. Beilke LD, Aleksunes LM, Olson ER, Besselsen DG, Klaassen CD, Dvorak K et al. Decreased apoptosis during CAR-mediated hepatoprotection against lithocholic acid-induced liver injury in mice. Toxicol Lett 2009; 188: 38–44.

    Article  CAS  Google Scholar 

  37. Benbow U, Maitra R, Hamilton JW, Brinckerhoff CE . Selective modulation of collagenase 1 gene expression by the chemotherapeutic agent doxorubicin. Clinical Cancer Res 1999; 5: 203–208.

    CAS  Google Scholar 

  38. Fiebig A, Zhu W, Hollerbach C, Leber B, Andrews D . Bcl-XL is qualitatively different from and ten times more effective than Bcl-2 when expressed in a breast cancer cell line. BMC Cancer 2006; 6: 213.

    Article  Google Scholar 

  39. Lahoti T, Patel D, Thekkemadom V, Beckett R, Ray SD . Doxorubicin-induced in vivo nephrotoxicity involves oxidative stress-mediated multiple pro- and anti-apoptotic signaling pathways. Curr Neurovasc Res 2012; 9: 282–295.

    Article  CAS  Google Scholar 

  40. Wang H, Faucette S, Sueyoshi T, Moore R, Ferguson S, Negishi M et al. A Novel distal enhancer module regulated by pregnane X Receptor/Constitutive androstane receptor is essential for the maximal induction of CYP2B6 gene expression. J Biol Chem 2003; 278: 14146–14152.

    Article  CAS  Google Scholar 

  41. Takwi AAL, Li Y, Becker Buscaglia LE, Zhang J, Choudhury S, Park AK et al. A statin-regulated microRNA represses human c-Myc expression and function. EMBO Mol Med 2012; 4: 896–909.

    Article  CAS  Google Scholar 

  42. Bemis LT, Chen R, Amato CM, Classen EH, Robinson SE, Coffey DG et al. MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res 2008; 68: 1362–1368.

    Article  CAS  Google Scholar 

  43. Liu M, Lang N, Qiu M, Xu F, Li Q, Tang Q et al. miR-137 targets Cdc42 expression, induces cell cycle G1 arrest and inhibits invasion in colorectal cancer cells. Int J Cancer 2011; 128: 1269–1279.

    Article  CAS  Google Scholar 

  44. Shen F, Chu S, Bence AK, Bailey B, Xue X, Erickson PA et al. Quantitation of Doxorubicin uptake, efflux, and modulation of multidrug resistance (MDR) in MDR human cancer cells. J Pharmacol Exp Ther 2008; 324: 95–102.

    Article  CAS  Google Scholar 

  45. Tabe Y, Konopleva M, Contractor R, Munsell M, Schober WD, Jin L et al. Up-regulation of MDR1 and induction of doxorubicin resistance by histone deacetylase inhibitor depsipeptide (FK228) and ATRA in acute promyelocytic leukemia cells. Blood 2006; 107: 1546–1554.

    Article  CAS  Google Scholar 

  46. Liu J, Mao W, Ding B . Liang C-s. ERKs/p53 signal transduction pathway is involved in doxorubicin-induced apoptosis in H9c2 cells and cardiomyocytes. Am J Physiol Heart Circ Physiol 2008; 295: H1956–H1965.

    Article  CAS  Google Scholar 

  47. Clair SS, Giono L, Varmeh-Ziaie S, Resnick-Silverman L, Liu W-j, Padi A et al. DNA damage-induced downregulation of Cdc25C Is mediated by p53 via two independent mechanisms: one involves direct binding to the cdc25C promoter. Mol Cell 2004; 16: 725–736.

    Article  CAS  Google Scholar 

  48. Estève P-O, Chin HG, Pradhan S . Human maintenance DNA (cytosine-5)-methyltransferase and p53 modulate expression of p53-repressed promoters. Proc Natl Acad Sci USA 2005; 102: 1000–1005.

    Article  Google Scholar 

  49. Tojima H, Kakizaki S, Yamazaki Y, Takizawa D, Horiguchi N, Sato K et al. Ligand dependent hepatic gene expression profiles of nuclear receptors CAR and PXR. Toxicol Lett 2012; 212: 288–297.

    Article  CAS  Google Scholar 

  50. Jones PA, Baylin SB . The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002; 3: 415–428.

    CAS  Google Scholar 

  51. Esquela-Kerscher A, Slack FJ . Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006; 6: 259–269.

    Article  CAS  Google Scholar 

  52. Croce CM . Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009; 10: 704–714.

    Article  CAS  Google Scholar 

  53. Lujambio A . CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle 2007; 6: 1454–1458.

    Article  Google Scholar 

  54. Langevin SM, Stone RA, Bunker CH, Grandis JR, Sobol RW, Taioli E . MicroRNA-137 promoter methylation in oral rinses from patients with squamous cell carcinoma of the head and neck is associated with gender and body mass index. Carcinogenesis 2010; 31: 864–870.

    Article  CAS  Google Scholar 

  55. Zhao Y, Li Y, Lou G, Zhao L, Xu Z, Zhang Y et al. MiR-137 targets estrogen-related receptor alpha and impairs the proliferative and migratory capacity of breast cancer cells. PLoS One 2012; 7: e39102.

    Article  CAS  Google Scholar 

  56. The Vitravene Study Group, Safety of intravitreous fomivirsen for treatment of cytomegalovirus retinitis in patients with AIDS. Am J Ophthalmol 2002; 133: 484–498.

    Article  Google Scholar 

  57. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    Article  CAS  Google Scholar 

  58. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S et al. LNA-mediated microRNA silencing in non-human primates. Nature 2008; 452: 896–899.

    Article  CAS  Google Scholar 

  59. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al. Silencing of microRNAs in vivo with /'antagomirs/'. Nature 2005; 438: 685–689.

    Article  Google Scholar 

  60. Haldar S, Basu A . Modulation of microRNAs by chemical carcinogens and anticancer drugs in human cancer: potential inkling to therapeutic advantage. Mol Cell Pharmacol 2011; 3: 135–141.

    CAS  Google Scholar 

  61. Kotchetkov R, Cinatl J, Blaheta R, Vogel J-U, Karaskova J, Squire J et al. Development of resistance to vincristine and doxorubicin in neuroblastoma alters malignant properties and induces additional karyotype changes: A preclinical model. Int J Cancer 2003; 104: 36–43.

    Article  CAS  Google Scholar 

  62. Kotchetkov R, Driever PH, Cinatl J, Michaelis M, Karaskova J, Blaheta R et al. Increased malignant behavior in neuroblastoma cells with acquired multi-drug resistance does not depend on P-gp expression. Int J Oncol 2005; 27: 1029–1037.

    CAS  Google Scholar 

  63. Michaelis M, Cinatl J, Anand P, Rothweiler F, Kotchetkov R, Deimling Av et al. Onconase induces caspase-independent cell death in chemoresistant neuroblastoma cells. Cancer Lett 2007; 250: 107–116.

    Article  CAS  Google Scholar 

  64. Lu Z, Li Y, Takwi A, Li B, Zhang J, Conklin DJ et al. miR-301a as an NF-[kappa]B activator in pancreatic cancer cells. EMBO J 2011; 30: 57–67.

    Article  CAS  Google Scholar 

  65. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT et al. Real-time quantification of microRNAs by stem–loop RT–PCR. Nucleic Acids Res 2005; 33: e179.

    Article  Google Scholar 

  66. Krishan A, Ganapathi R . Laser flow cytometric studies on the intracellular fluorescence of anthracyclines. Cancer Res 1980; 40: 3895–3900.

    CAS  Google Scholar 

  67. Krishan A, Sauerteig A, Wellham LL . Flow cytometric studies on modulation of cellular adriamycin retention by phenothiazines. Cancer Res 1985; 45: 1046–1051.

    CAS  Google Scholar 

  68. Venne A, Li S, Mandeville R, Kabanov A, Alakhov V . Hypersensitizing effect of pluronic L61 on cytotoxic activity, transport, and subcellular distribution of doxorubicin in multiple drug-resistant cells. Cancer Res 1996; 56: 3626–3629.

    CAS  Google Scholar 

  69. Cherian MT, Wilson EM, Shapiro DJA . Competitive inhibitor that reduces recruitment of androgen receptor to androgen-responsive genes. J Biol Chem 2012; 287: 23368–23380.

    Article  CAS  Google Scholar 

  70. Chen T, Tompkins LM, Li L, Li H, Kim G, Zheng Y et al. A Single amino acid controls the functional switch of human constitutive androstane receptor (CAR) 1 to the xenobiotic-sensitive splicing variant CAR3. J Pharmacol Exp Ther 2010; 332: 106–115.

    Article  CAS  Google Scholar 

  71. Lin W, Wu J, Dong H, Bouck D, Zeng F-Y, Chen T . Cyclin-dependent kinase 2 negatively regulates human pregnane X Receptor-mediated CYP3A4 gene expression in HepG2 liver carcinoma cells. J Biol Chem 2008; 283: 30650–30657.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs David Moore and Hongbing Wang for plasmids; the Flow Cytometry and Cell Sorting Shared Resource, the St Jude Animal Resources Center and Veterinary Pathology Core for technical assistance; other members of the Chen group and Drs Yong Li, John Schuetz, and Kip Guy for valuable discussions; and Sharon Naron for editing the manuscript. This work was supported by the American Lebanese Syrian Associated Charities (ALSAC), St Jude Children’s Research Hospital (SJCRH), National Cancer Institute grant P30CA027165, National Institute of General Medical Sciences Grant GM086415, the Hilfe für krebskranke Kinder Frankfurt eV, the Frankfurter Stiftung für krebskranke Kinder, and the Kent Cancer Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takwi, A., Wang, YM., Wu, J. et al. miR-137 regulates the constitutive androstane receptor and modulates doxorubicin sensitivity in parental and doxorubicin-resistant neuroblastoma cells. Oncogene 33, 3717–3729 (2014). https://doi.org/10.1038/onc.2013.330

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.330

Keywords

This article is cited by

Search

Quick links