Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inflammatory lipid sphingosine-1-phosphate upregulates C-reactive protein via C/EBPβ and potentiates breast cancer progression

Abstract

A crucial role of the inflammatory lipid sphingosine-1-phosphate (S1P) in breast cancer aggressiveness has been reported. Recent clinical studies have suggested that C-reactive protein (CRP) has a role in breast cancer development. However, limited information is available on the molecular basis for the expression of CRP and its functional significance in breast cell invasion. The present study aimed to elucidate the molecular link between S1P and CRP during the invasive process of breast epithelial cells. This is the first report showing that transcription of CRP was markedly activated by S1P in breast cells. Our data suggest that not only S1P treatment but also the endogenously produced S1P may upregulate CRP in breast carcinoma cells. Transcription factors CCAAT/enhancer-binding protein beta and c-fos were required for S1P-induced CRP expression. Coupling of S1P3 to heterotrimeric Gαq triggered the expression of CRP, utilizing signaling pathways involving reactive oxygen species (ROS), Ca2+ and extracellular signal-related kinases (ERKs). S1P-induced CRP expression was crucial for the transcriptional activation of matrix metalloproteinase-9 through ERKs, ROS and c-fos, leading to breast cell invasion. Using a xenograft mice tumor model, we demonstrated that S1P induced CRP expression both in vitro and in vivo. Taken together, our findings have revealed a molecular basis for S1P-induced transcriptional activation of CRP and its functional significance in the acquisition of the invasive phenotype of human breast epithelial cells under inflammatory conditions. Our findings may provide useful information on the identification of useful therapeutic targets for inflammatory breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ . Cancer statistics. CA Cancer J Clin 2007; 57: 43–66.

    Article  PubMed  Google Scholar 

  2. Chambers AF, Groom AC, MacDonald IC . Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002; 2: 563–572.

    Article  CAS  PubMed  Google Scholar 

  3. Coussens LM, Werb Z . Inflammation and cancer. Nature 2002; 420: 860–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hojilla CV, Wood GA, Khokha R . Inflammation and breast cancer: metalloproteinases as common effectors of inflammation and extracellular matrix breakdown in breast cancer. Breast Cancer Res 2008; 10: 205.

    PubMed  PubMed Central  Google Scholar 

  5. Cole SW . Chronic inflammation and breast cancer recurrence. J Clin Oncol 2009; 27: 3418–3419.

    PubMed  Google Scholar 

  6. Volanakis JE . Human C-reactive protein: expression, structure, and function. Mol Immunol 2001; 38: 189–197.

    CAS  PubMed  Google Scholar 

  7. Erlinger TP, Platz EA, Rifai N, Helzlsouer KJ . C-reactive protein and the risk of incident colorectal cancer. JAMA 2004; 291: 585–590.

    CAS  PubMed  Google Scholar 

  8. Pierce BL, Ballard-Barbash R, Bernstein L, Baumgartner RN, Neuhouser ML, Wener MH et al. Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. J Clin Oncol 2009; 27: 3437–3444.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Allin KH, Nordestgaard BG, Flyger H, Bojesen SE . Elevated pre-treatment levels of plasma C-reactive protein are associated with poor prognosis after breast cancer: a cohort study. Breast Cancer Res 2011; 13: R55.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ravishankaran P, Karunanithi R . Clinical significance of preoperative serum interleukin-6 and C-reactive protein level in breast cancer patients. World J Surg Oncol 2011; 9: 18.

    PubMed  PubMed Central  Google Scholar 

  11. Kessenbrock K, Plaks V, Werb Z . Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010; 141: 52–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lelongt B, Trugnan G, Murphy G, Ronco PM . Matrix metalloproteinases MMP2 and MMP9 are produced in early stages of kidney morphogenesis but only MMP9 is required for renal organogenesis in vitro. J Cell Biol 1997; 136: 1363–1373.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sarén P, Welgus HG, PT. Kovanen . TNF-alpha and IL-1beta selectively induce expression of 92-kDa gelatinase by human macrophages. J Immunol 1996; 157: 4159–4165.

    PubMed  Google Scholar 

  14. Przybylowska K, Kluczna A, Zadrozny M, Krawczyk T, Kulig A, Rykala J et al. Polymorphisms of the promoter regions of matrix metalloproteinases genes MMP-1 and MMP-9 in breast cancer. Breast Cancer Res Treat 2006; 95: 65–72.

    CAS  PubMed  Google Scholar 

  15. Montero I, Orbe J, Varo N, Beloqui O, Monreal JI, Rodríguez JA et al. CRP induces matrix metalloproteinase-1 and -10 in human endothelial cells: implications for clinical and subclinical atherosclerosis. J Am Coll Cardiol 2006; 47: 1369–1378.

    CAS  PubMed  Google Scholar 

  16. Nabata A, Kuroki M, Ueba H, Hashimoto S, Umemoto T, Wada H et al. C-reactive protein induces endothelial cell apoptosis and matrix metalloproteinase-9 production in human mononuclear cells: implications for the destabilization of atherosclerotic plaque. Atherosclerosis 2008; 196: 129–135.

    CAS  PubMed  Google Scholar 

  17. Doronzo G, Russo I, Mattiello L, Trovati M, Anfossi G . CRP increases matrix metalloproteinase-2 expression and activity in cultured human vascular smooth muscle cells. J Lab Clin Med 2005; 146: 287–298.

    CAS  PubMed  Google Scholar 

  18. Van Brocklyn JR, Lee MJ, Menzeleev R, Olivera A, Edsall L, Cuvillier O et al. Dual actions of sphingosine-1-phosphate: extracellular through the Gi-coupled receptor Edg-1 and intracellular to regulate proliferation and survival. J Cell Biol 1998; 142: 229–240.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ammit AJ, Hastie AT, Edsall LC, Hoffman RK, Amrani Y, Krymskaya VP et al. Sphingosine 1-phosphate modulates human airway smooth muscle cell functions that promote inflammation and airway remodeling in asthma. FASEB J 2001; 15: 1212–1214.

    CAS  PubMed  Google Scholar 

  20. Hammad SM, Crellin HG, Wu BX, Melton J, Anelli V, Obeid LM . Dual and distinct roles for sphingosine kinase 1 and sphingosine 1 phosphate in the response to inflammatory stimuli in RAW macrophages. Prostaglandins Other Lipid Mediat 2008; 85: 107–114.

    CAS  PubMed  Google Scholar 

  21. Smicun Y, Reierstad S, Wang FQ, Lee C, Fishman DA . S1P regulation of ovarian carcinoma invasiveness. Gynecol Oncol 2006; 103: 952–959.

    CAS  PubMed  Google Scholar 

  22. Shida D, Fang X, Kordula T, Takabe K, Lépine S, Alvarez SE et al. Cross-talk between LPA1 and epidermal growth factor receptors mediates up-regulation of sphingosine kinase 1 to promote gastric cancer cell motility and invasion. Cancer Res 2008; 68: 6569–6577.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nagahashi M, Ramachandran S, Kim EY, Allegood JC, Rashid OM, Yamada A et al. Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and lymphangiogenesis. Cancer Res 2012; 72: 726–735.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim ES, Kim JS, Kim SG, Hwang S, Lee CH, Moon A . Sphingosine 1-phosphate regulates matrix metalloproteinase-9 expression and breast cell invasion through S1P3-Gαq coupling. J Cell Sci 2011; 124: 2220–2230.

    CAS  PubMed  Google Scholar 

  25. Radeke HH, von Wenckstern H, Stoidtner K, Sauer B, Hammer S, Kleuser B . Overlapping signaling pathways of sphingosine 1-phosphate and TGF-beta in the murine Langerhans cell line XS52. J Immunol 2005; 174: 2778–2786.

    CAS  PubMed  Google Scholar 

  26. Paugh SW, Payne SG, Barbour SE, Milstien S, Spiegel S . The immunosuppressant FTY720 is phosphorylated by sphingosine kinase type 2. FEBS Lett 2003; 554: 189–193.

    CAS  PubMed  Google Scholar 

  27. French KJ, Schrecengost RS, Lee BD, Zhuang Y, Smith SN, Eberly JL et al. Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res 2003; 63: 5962–5969.

    CAS  PubMed  Google Scholar 

  28. Kleemann R, Gervois PP, Verschuren L, Staels B, Princen HM, Kooistra T . Fibrates down-regulate IL-1-stimulated C-reactive protein gene expression in hepatocytes by reducing nuclear p50-NFkappa B-C/EBP-beta complex formation. Blood 2003; 101: 545–551.

    CAS  PubMed  Google Scholar 

  29. Young DP, Kushner I, Samols D . Binding of C/EBPbeta to the C-reactive protein (CRP) promoter in Hep3B cells is associated with transcription of CRP mRNA. J Immunol 2008; 181: 2420–2427.

    CAS  PubMed  Google Scholar 

  30. Hurst HC . Transcription factors. 1: bZIP proteins. Protein Profile 1994; 1: 123–168.

    CAS  PubMed  Google Scholar 

  31. Lekstrom-Himes J, Xanthopoulos KG . Biological role of the CCAAT/enhancer-binding protein family of transcription factors. J Biol Chem 1998; 273: 28545–28548.

    CAS  PubMed  Google Scholar 

  32. Windh RT, Lee MJ, Hla T, An S, Barr AJ, Manning DR . Differential coupling of the sphingosine-1-phosphate receptors Edg-1, Edg-3, and H218/Edg-5 to the Gi, Gq and G12 families of heterotrimeric G proteins. J Biol Chem 1999; 274: 27351–27358.

    CAS  PubMed  Google Scholar 

  33. Jongsma M, van Unen J, van Loenen PB, Michel MC, Peters SL, Alewijnse AE . Different response patterns of several ligands at the sphingosine-1-phosphate receptor subtype 3 (S1P(3)). Br J Pharmacol 2009; 156: 1305–1311.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Koid Y, Hasegawa T, Takahashi A, Endo A, Mochizuki N, Nakagawa M et al. Development of novel EDG3 antagonists using a 3D database search and their structure-activity relationships. J Med Chem 2002; 45: 4629–4638.

    Google Scholar 

  35. Okajima F, Tomura H, Sho K, Kimura T, Sato K, Im DS et al. Sphingosine 1-phosphate stimulates hydrogen peroxide generation through activation of phospholipase C-Ca2+ system in FRTL-5 thyroid cells: possible involvement of guanosine triphosphate-binding proteins in the lipid signaling. Endocrinology 1997; 138: 220–229.

    CAS  PubMed  Google Scholar 

  36. Sato K, Kon J, Tomura H, Osada M, Murata N, Kuwabara A et al. Activation of phospholipase C-Ca2+ system by sphingosine 1-phosphate in CHO cells transfected with Edg-3, a putative lipid receptor. FEBS Lett 1999; 443: 25–30.

    CAS  PubMed  Google Scholar 

  37. Wilsher NE, Court WJ, Ruddle R, Newbatt YM, Aherne W, Sheldrake PW et al. The phosphoinositide-specific phospholipase C inhibitor U73122 (1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione) spontaneously forms conjugates with common components of cell culture medium. Drug Metab Dispos 2007; 35: 1017–1022.

    CAS  PubMed  Google Scholar 

  38. Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ . Activation of mitogen-activated protein kinase by H2O2. J Biol Chem 1996; 271: 4138–4142.

    CAS  PubMed  Google Scholar 

  39. Singh P, Hoffmann M, Wolk R, Shamsuzzaman AS, Somers VK . Leptin induces C-reactive protein expression in vascular endothelial cells. Arterioscler Thromb Vasc Biol 2007; 27: e302–e307.

    CAS  PubMed  Google Scholar 

  40. Chang JW, Kim CS, Kim SB, Park SK, Park JS, Lee SK . C-reactive protein induces NF-kappaB activation through intracellular calcium and ROS in human mesangial cells. Nephron Exp Nephrol 2005; 101: e165–e172.

    CAS  PubMed  Google Scholar 

  41. Masamune A, Watanabe T, Kikuta K, Satoh K, Shimosegawa T . NADPH oxidase plays a crucial role in the activation of pancreatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2008; 294: G99–G108.

    CAS  PubMed  Google Scholar 

  42. Price MO, Atkinson SJ, Knaus UG, Dinauer MC . Rac activation induces NADPH oxidase activity in transgenic COSphox cells, and the level of superoxide production is exchange factor-dependent. J Biol Chem 2002; 277: 19220–19228.

    CAS  PubMed  Google Scholar 

  43. Hu J, Roy SK, Shapiro PS, Rodig SR, Reddy SP, Platanias LC et al. ERK1 and ERK2 activate CCAAAT/enhancer-binding protein-beta-dependent gene transcription in response to interferon-gamma. J Biol Chem 2001; 276: 287–297.

    CAS  PubMed  Google Scholar 

  44. Salmenperä P, Hämäläinen S, Hukkanen M, Kankuri E . Interferon-gamma induces C/EBP beta expression and activity through MEK/ERK and p38 in T84 colon epithelial cells. Am J Physiol Cell Physiol 2003; 284: C1133–C1139.

    PubMed  Google Scholar 

  45. Lewis CE, Hughes R . Inflammation and breast cancer. Microenvironmental factors regulating macrophage function in breast tumours: hypoxia and angiopoietin-2. Breast Cancer Res 2007; 9: 209.

    PubMed  PubMed Central  Google Scholar 

  46. Goldberg JE, Schwertfeger KL . Proinflammatory cytokines in breast cancer: mechanisms of action and potential targets for therapeutics. Curr Drug Targets 2010; 11: 1133–1146.

    CAS  PubMed  Google Scholar 

  47. Depraetere S, Willems J, Joniau M . Stimulation of CRP secretion in HepG2 cells: cooperative effect of dexamethasone and interleukin 6. Agents Actions 1991; 34: 369–375.

    CAS  PubMed  Google Scholar 

  48. Haider DG, Leuchten N, Schaller G, Gouya G, Kolodjaschna J, Schmetterer L et al. C-reactive protein is expressed and secreted by peripheral blood mononuclear cells. Clin Exp Immunol 2006; 146: 533–539.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Venugopal SK, Devaraj S, Jialal I . Macrophage conditioned medium induces the expression of C-reactive protein in human aortic endothelial cells: potential for paracrine/autocrine effects. Am J Pathol 2005; 166: 1265–1271.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lei KJ, Liu T, Zon G, Soravia E, Liu TY, Goldman ND . Genomic DNA sequence for human C-reactive protein. J Biol Chem 1985; 260: 13377–13383.

    CAS  PubMed  Google Scholar 

  51. Woo P, Korenberg JR, Whitehead AS . Characterization of genomic and complementary DNA sequence of human C-reactive protein, and comparison with the complementary DNA sequence of serum amyloid P component. J Biol Chem 1985; 260: 13384–13388.

    CAS  PubMed  Google Scholar 

  52. Tron K, Manolov DE, Röcker C, Kächele M, Torzewski J, Nienhaus GU . C-reactive protein specifically binds to Fcgamma receptor type I on a macrophage-like cell line. Eur J Immunol 2008; 38: 1414–1422.

    CAS  PubMed  Google Scholar 

  53. Lu J, Marjon KD, Marnell LL, Wang R, Mold C, Du Clos TW et al. Recognition and functional activation of the human IgA receptor (FcalphaRI) by C-reactive protein. Proc Natl Acad Sci USA 2011; 108: 4974–4979.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ganter U, Arcone R, Toniatti C, Morrone G, Ciliberto G . Dual control of C-reactive protein gene expression by interleukin-1 and interleukin-6. EMBO J 1989; 8: 3773–3779.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Moshage HJ, Roelofs HM, van Pelt JF, Hazenberg BP, van Leeuwen MA et al. The effect of interleukin-1, interleukin-6 and its interrelationship on the synthesis of serum amyloid A and C-reactive protein in primary cultures of adult human hepatocytes. Biochem Biophys Res Commun 1988; 155: 112–117.

    CAS  PubMed  Google Scholar 

  56. Nishikawa T, Hagihara K, Serada S, Isobe T, Matsumura A, Song J et al. Transcriptional complex formation of c-Fos, STAT3, and hepatocyte NF-1 alpha is essential for cytokine-driven C-reactive protein gene expression. J Immunol 2008; 180: 3492–3501.

    CAS  PubMed  Google Scholar 

  57. Kilareski EM, Shah S, Nonnemacher MR, Wigdahl B . Regulation of HIV-1 transcription in cells of the monocyte-macrophage lineage. Retrovirology 2009; 6: 118.

    PubMed  PubMed Central  Google Scholar 

  58. Du Clos TW . Function of C-reactive protein. Ann Med 2000; 32: 274–278.

    CAS  PubMed  Google Scholar 

  59. Swanson SJ, McPeek MM, Mortensen RF . Characteristics of the binding of human C-reactive protein (CRP) to laminin. J Cell Biochem 1989; 40: 121–132.

    CAS  PubMed  Google Scholar 

  60. Suresh MV, Singh SK, Agrawal A . Interaction of calcium-bound C-reactive protein with fibronectin is controlled by pH: in vivo implications. J Biol Chem 2004; 279: 52552–52557.

    CAS  PubMed  Google Scholar 

  61. Patel DN, King CA, Bailey SR, Holt JW, Venkatachalam K, Agrawal A et al. Interleukin-17 stimulates C-reactive protein expression in hepatocytes and smooth muscle cells via p38 MAPK and ERK1/2-dependent NF-kappaB and C/EBPbeta activation. J Biol Chem 2007; 282: 27229–27238.

    CAS  PubMed  Google Scholar 

  62. Kaur G, Rao LV, Agrawal A, Pendurthi UR . Effect of wine phenolics on cytokine-induced C-reactive protein expression. J Thromb Haemost 2007; 5: 1309–1317.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Thannickal VJ, Fanburg BL . Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 2000; 279: L1005–L1028.

    CAS  PubMed  Google Scholar 

  64. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J . Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39: 44–84.

    CAS  PubMed  Google Scholar 

  65. Li J, Shao ZH, Xie JT, Wang CZ, Ramachandran S, Yin JJ et al. The effects of ginsenoside Rb1 on JNK in oxidative injury in cardiomyocytes. Arch Pharm Res 2012; 35: 1259–1267.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Catarzi S, Giannoni E, Favilli F, Meacci E, Iantomasi T, Vincenzini MT . Sphingosine 1-phosphate stimulation of NADPH oxidase activity: relationship with platelet-derived growth factor receptor and c-Src kinase. Biochim Biophys Acta 2007; 1770: 872–883.

    CAS  PubMed  Google Scholar 

  67. Tanimoto T, Lungu AO, Berk BC . Sphingosine 1-phosphate transactivates the platelet-derived growth factor beta receptor and epidermal growth factor receptor in vascular smooth muscle cells. Circ Res 2004; 94: 1050–1058.

    CAS  PubMed  Google Scholar 

  68. Dai DF, Chen T, Szeto H, Nieves-Cintrón M, Kutyavin V, Santana LF et al. Mitochondrial targeted antioxidant Peptide ameliorates hypertensive cardiomyopathy. J Am Coll Cardiol 2011; 58: 73–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Tobar N, Guerrero J, Smith PC, Martínez J . NOX4-dependent ROS production by stromal mammary cells modulates epithelial MCF-7 cell migration. Br J Cancer 2010; 103: 1040–1047.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Devaraj S, Dasu MR, Singh U, Rao LV, Jialal I . C-reactive protein stimulates superoxide anion release and tissue factor activity in vivo. Atherosclerosis 2009; 203: 67–74.

    CAS  PubMed  Google Scholar 

  71. Wu ZS, Wu Q, Yang JH, Wang HQ, Ding XD, Yang F et al. Prognostic significance of MMP-9 and TIMP-1 serum and tissue expression in breast cancer. Int J Cancer 2008; 122: 2050–2056.

    CAS  PubMed  Google Scholar 

  72. Gong Y, Hart E, Shchurin A, Hoover-Plow J . Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice. J Clin Invest 2008; 118: 3012–3024.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim MS, Lee EJ, Kim HR, Moon A . p38 kinase is a key signaling molecule for H-Ras-induced cell motility and invasive phenotype in human breast epithelial cells. Cancer Res 2003; 63: 454–5461.

    Google Scholar 

  74. Shin I, Kim S, Song H, Kim HR, Moon A . H-Ras-specific activation of Rac-MKK3/6-p38 pathway: its critical role in invasion and migration of breast epithelial cells. J Biol Che 2005; 280: 4675–14683.

    Google Scholar 

  75. Kim ES, Jeong JB, Kim S, Lee KM, Ko E, Noh DY et al. The G(12) family proteins upregulate matrix metalloproteinase-2 via p53 leading to human breast cell invasion. Breast Cancer Res Treat 2010; 124: 49–61.

    CAS  PubMed  Google Scholar 

  76. Yong HY, Hwang JS, Son H, Park HI, Oh ES, Kim HH et al. Identification of H-Ras-specific motif for the activation of invasive signaling program in human breast epithelial cells. Neoplasia 2011; 13: 98–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Nava VE, Hobson JP, Murthy S, Milstien S, Spiegel S . Sphingosine kinase type 1 promotes estrogen-dependent tumorigenesis of breast cancer MCF-7 cells. Exp Cell Res 2002; 281: 115–127.

    CAS  PubMed  Google Scholar 

  78. Goetzl EJ, Dolezalova H, Kong Y, Zeng L . Dual mechanisms for lysophospholipid induction of proliferation of human breast carcinoma cells. Cancer Res 1999; 59: 4732–4737.

    CAS  PubMed  Google Scholar 

  79. Long JS, Fujiwara Y, Edwards J, Tannahill CL, Tigyi G, Pyne S et al. Sphingosine 1-phosphate receptor 4 uses HER2 (ERBB2) to regulate extracellular signal regulated kinase-1/2 in MDA-MB-453 breast cancer cells. J Biol Chem 2010; 285: 35957–35966.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Bodmer B, Siboo R . Isolation of mouse C-reactive protein from liver and serum. J Immunol 1977; 118: 1086–1089.

    CAS  PubMed  Google Scholar 

  81. Pepys MB, Hirschfield GM . C-reactive protein: a critical update. J Clin Invest 2003; 111: 1805–1812.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Teoh H, Quan A, Lovren F, Wang G, Tirgari S, Szmitko PE et al. Impaired endothelial function in C-reactive protein overexpressing mice. Atherosclerosis 2008; 201: 318–325.

    CAS  PubMed  Google Scholar 

  83. Kleemann R, Verschuren L, Morrison M, Zadelaar S, van Erk MJ, Wielinga PY et al. Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis 2011; 218: 44–52.

    CAS  PubMed  Google Scholar 

  84. Azuma H, Takahara S, Ichimaru N, Wang JD, Itoh Y, Otsuki Y et al. Marked prevention of tumor growth and metastasis by a novel immunosuppressive agent, FTY720, in mouse breast cancer models. Cancer Res 2002; 62: 1410–1419.

    CAS  PubMed  Google Scholar 

  85. Pchejetski D, Bohler T, Brizuela L, Sauer L, Doumerc N, Golzio MV et al. FTY720 (fingolimod) sensitizes prostate cancer cells to radiotherapy by inhibition of sphingosine kinase-1. Cancer Res 2010; 70: 8651–8661.

    CAS  PubMed  Google Scholar 

  86. Schneider G, Bryndza E, Abdel-Latif A, Ratajczak J, Maj M, Tarnowski M et al. Bioactive lipids S1P and C1P are pro-metastatic factors in human rhabdomyosarcomas cell lines, and their tissue level increases in response to radio/chemotherapy. Mol Cancer Res 2013; 11: 793–807.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Moon A, Kim MS, Kim TG, Kim SH, Kim HE, Chen YQ et al. H-ras, but not N-ras, induces an invasive phenotype in human breast epithelial cells: a role for MMP-2 in the H-rasinduced invasive phenotype. Int J Cancer 2000; 85: 176–181.

    CAS  PubMed  Google Scholar 

  88. Cha Y, Kang Y, Moon A . HER2 induces expression of leptin in human breast epithelial cells. BMB Rep 2012; 45: 719–723.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Han C, Liu J, Liu X, Li M . Angiotensin II induces C-reactive protein expression through ERK1/2 and JNK signaling in human aortic endothelial cells. Atherosclerosis 2010; 212: 206–212.

    CAS  PubMed  Google Scholar 

  90. Song H, Ki SH, Kim SG, Moon A . Activating transcription factor 2 mediates matrix metalloproteinase-2 transcriptional activation induced by p38 in breast epithelial cells. Cancer Res 2006; 66: 0487–10496.

    Google Scholar 

  91. Ma Z, Qin H, Benveniste EN . Transcriptional suppression of matrix metalloproteinase-9 gene expression by IFN-gamma and IFN-beta: critical role of STAT-1alpha. J Immunol 2001; 167: 5150–5159.

    CAS  PubMed  Google Scholar 

  92. Bonnaud S, Niaudet C, Legoux F, Corre I, Delpon G, Saulquin X et al. Sphingosine-1-phosphate activates that AKT pathway to protect small intestines from radiation-induced endothelial apoptosis. Cancer Res 2010; 70: 9905–9915.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grants (no. ROA-2012-0006262, no R11-2007-0056817, and no. 2013R1A2A2A04013379) and Korea Drug Development Fund (no. A100030101002011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Moon.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, ES., Cha, Y., Ham, M. et al. Inflammatory lipid sphingosine-1-phosphate upregulates C-reactive protein via C/EBPβ and potentiates breast cancer progression. Oncogene 33, 3583–3593 (2014). https://doi.org/10.1038/onc.2013.319

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.319

Keywords

This article is cited by

Search

Quick links