Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Preclinical modeling of EGFR-specific antibody resistance: oncogenic and immune-associated escape mechanisms

Abstract

To define the molecular basis of secondary resistance to epidermal growth factor receptor (EGFR)-specific antibodies is crucial to increase clinical benefit in patients. The limited access to posttreatment tumor samples constitutes the major barrier to conduct these studies, representing preclinical experimentation as a useful alternative. Anti-EGFR antibody-based therapy has been reported to mediate tumor regression by interrupting oncogenic signals and, more recently, by inducing antitumor immunological responses. However, resistance models have been focused only on tumor escape associated with EGFR blockade, whereas studies describing immune-associated escape mechanisms have not been reported thus far. To address this idea, we modeled resistance induction in D122 metastasis-bearing C57BL/6 mice treated with 7A7 (an anti-murine EGFR antibody). Similarly to patients receiving EGFR-specific antibodies, 7A7 resistance promotion represents an important drawback to successful therapy. Characterization of primary cultures derived from metastasis in 7A7-treated mice revealed a high frequency of tumor variants resistant to in vivo and in vitro antibody treatment. We showed, for the first time, the convergence of alterations in oncogenic and immunological pathways in 7A7-resistant variants. To identify key molecules behind resistance, seven 7A7-resistant variants were screened. HER3 overexpression and PTEN deficiency leading to hyperactivation of protumoral downstream signaling were found in these variants as a consequence of 7A7-mediated EGFR inhibition. Concomitantly, we found a high percentage of resistant variants carrying abnormalities in the constitutive and/or interferon gamma (IFN-γ)-inducible major histocompatibility complex I (MHC-I) expression. A significant decrease in mRNA levels for MHC-I heavy chains, β2-microglogulin and antigen processing machinery genes as well as transcriptional alterations in IFN-γ pathway components were identified as the main mechanisms underlying MHC-I expression defects in 7A7-resistant variants. Notably, these defects have not been previously associated with EGFR-specific antibody resistance, providing novel immunological escape mechanisms. This study has strong implications for the development of new combination strategies to overcome anti-EGFR antibodies refractoriness.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

EGFR or HER1:

epidermal growth factor receptor

mAb:

monoclonal antibody

APM:

antigen processing machinery

β2-m:

β2-microglobulin

HC:

heavy chains

NRG1:

neuregulin 1

MFI:

mean fluorescence intensity

References

  1. Yarden Y, Pines G . The ERBB network: at last, cancer therapy meets systems biology. Nat Rev Cancer 2012; 12: 553–563.

    Article  CAS  PubMed  Google Scholar 

  2. Reichert JM, Dhimolea E . The future of antibodies as cancer drugs. Drug Discov Today 2012; 17: 954–963.

    Article  CAS  PubMed  Google Scholar 

  3. Perez R, Moreno E, Garrido G, Crombet T . EGFR-targeting as a biological therapy: understanding nimotuzumab’s clinical effects. Cancers 2011; 3: 2014–2031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 2008; 26: 1626–1634.

    Article  CAS  PubMed  Google Scholar 

  5. Karapetis CS, Khambata-Ford S, Jonker DJ, O'Callaghan CJ, Tu D, Tebbutt NC et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008; 359: 1757–1765.

    Article  CAS  PubMed  Google Scholar 

  6. Van Cutsem E, Kohne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 2009; 360: 1408–1417.

    Article  CAS  PubMed  Google Scholar 

  7. Bokemeyer C, Bondarenko I, Makhson A, Hartmann JT, Aparicio J, de Braud F et al. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol 2009; 27: 663–671.

    Article  CAS  PubMed  Google Scholar 

  8. Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol 2010; 28: 4697–4705.

    Article  CAS  PubMed  Google Scholar 

  9. Peeters M, Price TJ, Cervantes A, Sobrero AF, Ducreux M, Hotko Y et al. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as s-line treatment in patients with metastatic colorectal cancer. J Clin Oncol 2010; 28: 4706–4713.

    Article  CAS  PubMed  Google Scholar 

  10. Brand TM, Iida M, Wheeler DL . Molecular mechanisms of resistance to the EGFR monoclonal antibody cetuximab. Cancer Biol Ther 2011; 11: 777–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Correale P, Botta C, Cusi MG, Del Vecchio MT, De Santi MM, Gori Savellini G et al. Cetuximab +/- chemotherapy enhances dendritic cell-mediated phagocytosis of colon cancer cells and ignites a highly efficient colon cancer antigen-specific cytotoxic T-cell response in vitro. Int J Cancer 2012; 130: 1577–1589.

    Article  CAS  PubMed  Google Scholar 

  12. Yang X, Zhang X, Mortenson ED, Radkevich-Brown O, Wang Y, Fu YX . Cetuximab-mediated tumor regression depends on innate and adaptive immune responses. Mol Ther 2012; 21: 91–100.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Srivastava RM, Lee SC, Andrade Filho PA, Lord CA, Jie HB, Davidson C et al. Cetuximab-activated natural killer (NK) and dendritic cells (DC) collaborate to trigger tumor antigen-specific T cell immunity in head and neck cancer patients. Clin Cancer Res 2013; 19: 1858–1872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Garrido G, Sanchez B, Rodriguez HM, Lorenzano P, Alonso D, Fernandez LE . 7A7 MAb: a new tool for the pre-clinical evaluation of EGFR-based therapies. Hybrid Hybridomics 2004; 23: 168–175.

    Article  CAS  PubMed  Google Scholar 

  15. Talavera A, Mackenzie J, Garrido G, Friemann R, Lopez-Requena A, Moreno E et al. Structure of the Fab fragment of the anti-murine EGFR antibody 7A7 and exploration of its receptor binding site. Mol Immunol 2011; 48: 1578–1585.

    Article  CAS  PubMed  Google Scholar 

  16. Garrido G, Lorenzano P, Sanchez B, Beausoleil I, Alonso DF, Perez R et al. T cells are crucial for the anti-metastatic effect of anti-epidermal growth factor receptor antibodies. Cancer Immunol Immunother 2007; 56: 1701–1710.

    Article  CAS  PubMed  Google Scholar 

  17. Garrido G, Rabasa A, Sanchez B, Lopez MV, Blanco R, Lopez A et al. Induction of immunogenic apoptosis by blockade of epidermal growth factor receptor activation with a specific antibody. J Immunol 2011; 187: 4954–4966.

    Article  CAS  PubMed  Google Scholar 

  18. Kelly-Spratt KS, Philipp-Staheli J, Gurley KE, Hoon-Kim K, Knoblaugh S, Kemp CJ . Inhibition of PI-3K restores nuclear p27Kip1 expression in a mouse model of Kras-driven lung cancer. Oncogene 2009; 28: 3652–3662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chu IM, Hengst L, Slingerland JM . The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 2008; 8: 253–267.

    Article  CAS  PubMed  Google Scholar 

  20. Ishizawar RC, Miyake T, Parsons SJ . c-Src modulates ErbB2 and ErbB3 heterocomplex formation and function. Oncogene 2007; 26: 3503–3510.

    Article  CAS  PubMed  Google Scholar 

  21. Akiyama T, Matsuda S, Namba Y, Saito T, Toyoshima K, Yamamoto T . The transforming potential of the c-erbB-2 protein is regulated by its autophosphorylation at the carboxyl-terminal domain. Mol Cell Biol 1991; 11: 833–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wheeler DL, Iida M, Dunn EF . The role of Src in solid tumors. Oncologist 2009; 14: 667–678.

    Article  CAS  PubMed  Google Scholar 

  23. Rabinovich GA, Gabrilovich D, Sotomayor EM . Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 2007; 25: 267–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Seliger B, Ruiz-Cabello F, Garrido F . IFN inducibility of major histocompatibility antigens in tumors. Adv Cancer Res 2008; 101: 249–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Erjala K, Sundvall M, Junttila TT, Zhang N, Savisalo M, Mali P et al. Signaling via ErbB2 and ErbB3 associates with resistance and epidermal growth factor receptor (EGFR) amplification with sensitivity to EGFR inhibitor gefitinib in head and neck squamous cell carcinoma cells. Clin Cancer Res 2006; 12: 4103–4111.

    Article  CAS  PubMed  Google Scholar 

  26. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007; 316: 1039–1043.

    Article  CAS  PubMed  Google Scholar 

  27. Wheeler DL, Huang S, Kruser TJ, Nechrebecki MM, Armstrong EA, Benavente S et al. Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene 2008; 27: 3944–3956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sergina NV, Rausch M, Wang D, Blair J, Hann B, Shokat KM et al. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 2007; 445: 437–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yarden Y, Sliwkowski MX . Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001; 2: 127–137.

    Article  CAS  PubMed  Google Scholar 

  30. Kim SM, Kim JS, Kim JH, Yun CO, Kim EM, Kim HK et al. Acquired resistance to cetuximab is mediated by increased PTEN instability and leads cross-resistance to gefitinib in HCC827 NSCLC cells. Cancer Lett 2010; 296: 150–159.

    Article  CAS  PubMed  Google Scholar 

  31. Garrido F, Ruiz-Cabello F, Cabrera T, Perez-Villar JJ, Lopez-Botet M, Duggan-Keen M et al. Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today 1997; 18: 89–95.

    Article  CAS  PubMed  Google Scholar 

  32. Aptsiauri N, Cabrera T, Garcia-Lora A, Lopez-Nevot MA, Ruiz-Cabello F, Garrido F . MHC class I antigens and immune surveillance in transformed cells. Int Rev Cytol 2007; 256: 139–189.

    Article  CAS  PubMed  Google Scholar 

  33. Garrido F, Cabrera T, Aptsiauri N . ‘Hard’ and ‘soft’ lesions underlying the HLA class I alterations in cancer cells: implications for immunotherapy. Int J Cancer 2010; 127: 249–256.

    CAS  PubMed  Google Scholar 

  34. Garcia-Lora A, Martinez M, Algarra I, Gaforio JJ, Garrido F . MHC class I-deficient metastatic tumor variants immunoselected by T lymphocytes originate from the coordinated downregulation of APM components. Int J Cancer 2003; 106: 521–527.

    Article  CAS  PubMed  Google Scholar 

  35. Meissner M, Reichert TE, Kunkel M, Gooding W, Whiteside TL, Ferrone S et al. Defects in the human leukocyte antigen class I antigen processing machinery in head and neck squamous cell carcinoma: association with clinical outcome. Clin Cancer Res 2005; 11: 2552–2560.

    Article  CAS  PubMed  Google Scholar 

  36. Romero JM, Jimenez P, Cabrera T, Cozar JM, Pedrinaci S, Tallada M et al. Coordinated downregulation of the antigen presentation machinery and HLA class I/beta2-microglobulin complex is responsible for HLA-ABC loss in bladder cancer. Int J Cancer 2005; 113: 605–610.

    Article  CAS  PubMed  Google Scholar 

  37. Duncan TJ, Rolland P, Deen S, Scott IV, Liu DT, Spendlove I et al. Loss of IFN gamma receptor is an independent prognostic factor in ovarian cancer. Clin Cancer Res 2007; 13: 4139–4145.

    Article  CAS  PubMed  Google Scholar 

  38. Abril E, Real LM, Serrano A, Jimenez P, Garcia A, Canton J et al. Unresponsiveness to interferon associated with STAT1 protein deficiency in a gastric adenocarcinoma cell line. Cancer Immunol Immunother 1998; 47: 113–120.

    Article  CAS  PubMed  Google Scholar 

  39. Xi S, Dyer KF, Kimak M, Zhang Q, Gooding WE, Chaillet JR et al. Decreased STAT1 expression by promoter methylation in squamous cell carcinogenesis. J Natl Cancer Inst 2006; 98: 181–189.

    Article  CAS  PubMed  Google Scholar 

  40. Groettrup M, Standera S, Stohwasser R, Kloetzel PM . The subunits MECL-1 and LMP2 are mutually required for incorporation into the 20S proteasome. Proc Natl Acad Sci USA 1997; 94: 8970–8975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Herrmann F, Lehr HA, Drexler I, Sutter G, Hengstler J, Wollscheid U et al. HER-2/neu-mediated regulation of components of the MHC class I antigen-processing pathway. Cancer Res 2004; 64: 215–220.

    Article  CAS  PubMed  Google Scholar 

  42. Romero I, Martinez M, Garrido C, Collado A, Algarra I, Garrido F et al. The tumour suppressor Fhit positively regulates MHC class I expression on cancer cells. J Pathol 2012; 227: 367–379.

    Article  CAS  PubMed  Google Scholar 

  43. Bianchi F, Magnifico A, Olgiati C, Zanesi N, Pekarsky Y, Tagliabue E et al. FHIT-proteasome degradation caused by mitogenic stimulation of the EGF receptor family in cancer cells. Proc Natl Acad Sci USA 2006; 103: 18981–18986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Garrido C, Paco L, Romero I, Berruguilla E, Stefansky J, Collado A et al. MHC class I molecules act as tumor suppressor genes regulating the cell cycle gene expression, invasion and intrinsic tumorigenicity of melanoma cells. Carcinogenesis 2012; 33: 687–693.

    Article  CAS  PubMed  Google Scholar 

  45. Pollack BP, Sapkota B, Cartee TV . Epidermal growth factor receptor inhibition augments the expression of MHC class I and II genes. Clin Cancer Res 2011; 17: 4400–4413.

    Article  CAS  PubMed  Google Scholar 

  46. Eisenbach L, Hollander N, Greenfeld L, Yakor H, Segal S, Feldman M . The differential expression of H-2K versus H-2D antigens, distinguishing high-metastatic from low-metastatic clones, is correlated with the immunogenic properties of the tumor cells. Int J Cancer 1984; 34: 567–573.

    Article  CAS  PubMed  Google Scholar 

  47. Porgador A, Brenner B, Vadai E, Feldman M, Eisenbach L . Immunization by gamma-IFN-treated B16-F10.9 melanoma cells protects against metastatic spread of the parental tumor. Int J Cancer Suppl 1991; 6: 54–60.

    Article  CAS  PubMed  Google Scholar 

  48. Garrido C, Algarra I, Maleno I, Stefanski J, Collado A, Garrido F et al. Alterations of HLA class I expression in human melanoma xenografts in immunodeficient mice occur frequently and are associated with higher tumorigenicity. Cancer Immunol Immunother 2010; 59: 13–26.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Isabel Linares and Ignacio Algarra for technical assistance. This work was partially supported by Cuban Government, a grant from Boehringer Ingelheim Fonds and by grants from the Instituto de Salud Carlos III (CP03/0111, PI12/02031, PI 08/1265, PI 11/01022, RETIC RD 06/020); Junta de Andalucía (Group CTS-143 and CTS-695, CTS-3952, CVI-4740 grants), Spain. CG was supported by the MEC (FPU, 1631). AMGL was supported by Miguel Servet Contract CP03/0111 and Contract I3 from FPS and ISCIII, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Sánchez.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garrido, G., Rabasa, A., Garrido, C. et al. Preclinical modeling of EGFR-specific antibody resistance: oncogenic and immune-associated escape mechanisms. Oncogene 33, 3129–3139 (2014). https://doi.org/10.1038/onc.2013.288

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.288

Keywords

This article is cited by

Search

Quick links