Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

ATM signalling and cancer

Abstract

ATM, the protein kinase mutated in the rare human disease ataxia telangiectasia (A-T), has been the focus of intense scrutiny over the past two decades. Initially this was because of the unusual radiosensitive phenotype of cells from A-T patients, and latterly because investigating ATM signalling has yielded valuable insights into the DNA damage response, redox signalling and cancer. With the recent explosion in genomic data, ATM alterations have been revealed both in the germline as a predisposing factor for cancer and as somatic changes in tumours themselves. Here we review these findings, as well as advances in the understanding of ATM signalling mechanisms in cancer and ATM inhibition as a strategy for cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 1995; 268: 1749–1753.

    CAS  PubMed  Google Scholar 

  2. Shiloh Y . ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 2003; 3: 155–168.

    Article  CAS  PubMed  Google Scholar 

  3. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 2007; 316: 1160–1166.

    CAS  PubMed  Google Scholar 

  4. Bakkenist CJ, Kastan MB . DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003; 421: 499–506.

    CAS  PubMed  Google Scholar 

  5. Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y . Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 2003; 22: 5612–5621.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee JH, Paull TT . ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 2005; 308: 551–554.

    CAS  PubMed  Google Scholar 

  7. Wu J, Zhang X, Zhang L, Wu CY, Rezaeian AH, Chan CH et al. Skp2 E3 ligase integrates ATM activation and homologous recombination repair by ubiquitinating NBS1. Mol Cell 2012; 46: 351–361.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jazayeri A, Balestrini A, Garner E, Haber JE, Costanzo V . Mre11-Rad50-Nbs1-dependent processing of DNA breaks generates oligonucleotides that stimulate ATM activity. EMBO J 2008; 27: 1953–1962.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kruhlak MJ, Celeste A, Dellaire G, Fernandez-Capetillo O, Muller WG, McNally JG et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J Cell Biol 2006; 172: 823–834.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dupre A, Boyer-Chatenet L, Gautier J . Two-step activation of ATM by DNA and the Mre11-Rad50-Nbs1 complex. Nat Struct Mol Biol 2006; 13: 451–457.

    CAS  PubMed  Google Scholar 

  11. Pellegrini M, Celeste A, Difilippantonio S, Guo R, Wang W, Feigenbaum L et al. Autophosphorylation at serine 1987 is dispensable for murine Atm activation in vivo. Nature 2006; 443: 222–225.

    CAS  PubMed  Google Scholar 

  12. Daniel JA, Pellegrini M, Lee JH, Paull TT, Feigenbaum L, Nussenzweig A . Multiple autophosphorylation sites are dispensable for murine ATM activation in vivo. J Cell Biol 2008; 183: 777–783.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. So S, Davis AJ, Chen DJ . Autophosphorylation at serine 1981 stabilizes ATM at DNA damage sites. J Cell Biol 2009; 187: 977–990.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kalev P, Simicek M, Vazquez I, Munck S, Chen L, Soin T et al. Loss of PPP2R2A inhibits homologous recombination DNA repair and predicts tumor sensitivity to PARP inhibition. Cancer Res 2012; 72: 6414–6424.

    CAS  PubMed  Google Scholar 

  15. Berkovich E, Monnat RJ Jr., Kastan MB . Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol 2007; 9: 683–690.

    CAS  PubMed  Google Scholar 

  16. Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S et al. GammaH2AX and cancer. Nat Rev Cancer 2008; 8: 957–967.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Doil C, Mailand N, Bekker-Jensen S, Menard P, Larsen DH, Pepperkok R et al. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell 2009; 136: 435–446.

    CAS  PubMed  Google Scholar 

  18. Stewart GS, Panier S, Townsend K, Al-Hakim AK, Kolas NK, Miller ES et al. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell 2009; 136: 420–434.

    CAS  PubMed  Google Scholar 

  19. Kolas NK, Chapman JR, Nakada S, Ylanko J, Chahwan R, Sweeney FD et al. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science 2007; 318: 1637–1640.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mattiroli F, Vissers JH, van Dijk WJ, Ikpa P, Citterio E, Vermeulen W et al. RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling. Cell 2012; 150: 1182–1195.

    CAS  PubMed  Google Scholar 

  21. Savic V, Yin B, Maas NL, Bredemeyer AL, Carpenter AC, Helmink BA et al. Formation of dynamic gamma-H2AX domains along broken DNA strands is distinctly regulated by ATM and MDC1 and dependent upon H2AX densities in chromatin. Mol Cell 2009; 34: 298–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gudjonsson T, Altmeyer M, Savic V, Toledo L, Dinant C, Grofte M et al. TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes. Cell 2012; 150: 697–709.

    CAS  PubMed  Google Scholar 

  23. Batchelor E, Mock CS, Bhan I, Loewer A, Lahav G . Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage. Mol Cell 2008; 30: 277–289.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Derheimer FA, Kastan MB . Multiple roles of ATM in monitoring and maintaining DNA integrity. FEBS Lett 2010; 584: 3675–3681.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee JH, Paull TT . Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene 2007; 26: 7741–7748.

    CAS  PubMed  Google Scholar 

  26. Shiloh Y, Ziv Y . The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 2013; 14: 197–210.

    CAS  PubMed  Google Scholar 

  27. Reina-San-Martin B, Chen HT, Nussenzweig A, Nussenzweig MC . ATM is required for efficient recombination between immunoglobulin switch regions. J Exp Med 2004; 200: 1103–1110.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zha S, Guo C, Boboila C, Oksenych V, Cheng HL, Zhang Y et al. ATM damage response and XLF repair factor are functionally redundant in joining DNA breaks. Nature 2011; 469: 250–254.

    CAS  PubMed  Google Scholar 

  29. Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Lobrich M et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell 2008; 31: 167–177.

    CAS  PubMed  Google Scholar 

  30. Noon AT, Shibata A, Rief N, Lobrich M, Stewart GS, Jeggo PA et al. 53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Nat Cell Biol 2010; 12: 177–184.

    CAS  PubMed  Google Scholar 

  31. Ziv Y, Bielopolski D, Galanty Y, Lukas C, Taya Y, Schultz DC et al. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat Cell Biol 2006; 8: 870–876.

    CAS  PubMed  Google Scholar 

  32. Goodarzi AA, Noon AT, Jeggo PA . The impact of heterochromatin on DSB repair. Biochem Soc Trans 2009; 37 (Pt 3): 569–576.

    CAS  PubMed  Google Scholar 

  33. Moyal L, Lerenthal Y, Gana-Weisz M, Mass G, So S, Wang SY et al. Requirement of ATM-dependent monoubiquitylation of histone H2B for timely repair of DNA double-strand breaks. Mol Cell 2011; 41: 529–542.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Murr R, Loizou JI, Yang YG, Cuenin C, Li H, Wang ZQ et al. Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat Cell Biol 2006; 8: 91–99.

    Article  CAS  PubMed  Google Scholar 

  35. Penicud K, Behrens A . DMAP1 is an essential regulator of ATM activity and function. Oncogene (e-pub ahead of print 14 January 2013; doi:10.1038/onc.2012.597).

    PubMed  PubMed Central  Google Scholar 

  36. Kim YC, Gerlitz G, Furusawa T, Catez F, Nussenzweig A, Oh KS et al. Activation of ATM depends on chromatin interactions occurring before induction of DNA damage. Nat Cell Biol 2009; 11: 92–96.

    CAS  PubMed  Google Scholar 

  37. Ray A, Mir SN, Wani G, Zhao Q, Battu A, Zhu Q et al. Human SNF5/INI1, a component of the human SWI/SNF chromatin remodeling complex, promotes nucleotide excision repair by influencing ATM recruitment and downstream H2AX phosphorylation. Mol Cell Biol 2009; 29: 6206–6219.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kruhlak M, Crouch EE, Orlov M, Montano C, Gorski SA, Nussenzweig A et al. The ATM repair pathway inhibits RNA polymerase I transcription in response to chromosome breaks. Nature 2007; 447: 730–734.

    CAS  PubMed  Google Scholar 

  39. Shanbhag NM, Rafalska-Metcalf IU, Balane-Bolivar C, Janicki SM, Greenberg RA . ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 2010; 141: 970–981.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ginjala V, Nacerddine K, Kulkarni A, Oza J, Hill SJ, Yao M et al. BMI1 is recruited to DNA breaks and contributes to DNA damage-induced H2A ubiquitination and repair. Mol Cell Biol 2011; 31: 1972–1982.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ismail IH, Andrin C, McDonald D, Hendzel MJ . BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair. J Cell Biol 2010; 191: 45–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Brunton H, Goodarzi AA, Noon AT, Shrikhande A, Hansen RS, Jeggo PA et al. Analysis of human syndromes with disordered chromatin reveals the impact of heterochromatin on the efficacy of ATM-dependent G2/M checkpoint arrest. Mol Cell Biol 2011; 31: 4022–4035.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ichijima Y, Ichijima M, Lou Z, Nussenzweig A, Camerini-Otero RD, Chen J et al. MDC1 directs chromosome-wide silencing of the sex chromosomes in male germ cells. Genes Dev 2011; 25: 959–971.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Difilippantonio S, Celeste A, Fernandez-Capetillo O, Chen HT, Reina San Martin B, Van Laethem F et al. Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nat Cell Biol 2005; 7: 675–685.

    CAS  PubMed  Google Scholar 

  45. McNees CJ, Conlan LA, Tenis N, Heierhorst J . ASCIZ regulates lesion-specific Rad51 focus formation and apoptosis after methylating DNA damage. EMBO J 2005; 24: 2447–2457.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kanu N, Behrens A . ATMIN defines an NBS1-independent pathway of ATM signalling. EMBO J 2007; 26: 2933–2941.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang T, Penicud K, Bruhn C, Loizou JI, Kanu N, Wang ZQ et al. Competition between NBS1 and ATMIN controls ATM signaling pathway choice. Cell Rep 2012; 2: 1498–1504.

    CAS  PubMed  Google Scholar 

  48. Kanu N, Penicud K, Hristova M, Wong B, Irvine E, Plattner F et al. The ATM cofactor ATMIN protects against oxidative stress and accumulation of DNA damage in the aging brain. J Biol Chem 2010; 285: 38534–38542.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Loizou JI, Sancho R, Kanu N, Bolland DJ, Yang F, Rada C et al. ATMIN is required for maintenance of genomic stability and suppression of B cell lymphoma. Cancer Cell 2011; 19: 587–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jurado S, Gleeson K, O'Donnell K, Izon DJ, Walkley CR, Strasser A et al. The Zinc-finger protein ASCIZ regulates B cell development via DYNLL1 and Bim. J Exp Med 2012; 209: 1629–1639.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Jurado S, Smyth I, van Denderen B, Tenis N, Hammet A, Hewitt K et al. Dual functions of ASCIZ in the DNA base damage response and pulmonary organogenesis. PLoS Genet 2010; 6: e1001170.

    PubMed  PubMed Central  Google Scholar 

  52. Shiotani B, Zou L . Single-stranded DNA orchestrates an ATM-to-ATR switch at DNA breaks. Mol Cell 2009; 33: 547–558.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Burdak-Rothkamm S, Rothkamm K, Prise KM . ATM acts downstream of ATR in the DNA damage response signaling of bystander cells. Cancer Res 2008; 68: 7059–7065.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Dodson GE, Tibbetts RS . DNA replication stress-induced phosphorylation of cyclic AMP response element-binding protein mediated by ATM. J Biol Chem 2006; 281: 1692–1697.

    CAS  PubMed  Google Scholar 

  55. Stiff T, Walker SA, Cerosaletti K, Goodarzi AA, Petermann E, Concannon P et al. ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J 2006; 25: 5775–5782.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yajima H, Lee KJ, Zhang S, Kobayashi J, Chen BP . DNA double-strand break formation upon UV-induced replication stress activates ATM and DNA-PKcs kinases. J Mol Biol 2009; 385: 800–810.

    CAS  PubMed  Google Scholar 

  57. Sirbu BM, Couch FB, Feigerle JT, Bhaskara S, Hiebert SW, Cortez D . Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes Dev 2011; 25: 1320–1327.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cheng WH, Muftic D, Muftuoglu M, Dawut L, Morris C, Helleday T et al. WRN is required for ATM activation and the S-phase checkpoint in response to interstrand cross-link-induced DNA double-strand breaks. Mol Biol Cell 2008; 19: 3923–3933.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ammazzalorso F, Pirzio LM, Bignami M, Franchitto A, Pichierri P . ATR and ATM differently regulate WRN to prevent DSBs at stalled replication forks and promote replication fork recovery. EMBO J 2010; 29: 3156–3169.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lukas C, Savic V, Bekker-Jensen S, Doil C, Neumann B, Pedersen RS et al. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol 2011; 13: 243–253.

    CAS  PubMed  Google Scholar 

  61. Bolderson E, Scorah J, Helleday T, Smythe C, Meuth M . ATM is required for the cellular response to thymidine induced replication fork stress. Hum Mol Genet 2004; 13: 2937–2945.

    CAS  PubMed  Google Scholar 

  62. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 2006; 444: 638–642.

    CAS  PubMed  Google Scholar 

  63. Ichijima Y, Yoshioka K, Yoshioka Y, Shinohe K, Fujimori H, Unno J et al. DNA lesions induced by replication stress trigger mitotic aberration and tetraploidy development. PLoS One 2010; 5: e8821.

    PubMed  PubMed Central  Google Scholar 

  64. Gamper AM, Choi S, Matsumoto Y, Banerjee D, Tomkinson AE, Bakkenist CJ . ATM protein physically and functionally interacts with proliferating cell nuclear antigen to regulate DNA synthesis. J Biol Chem 2012; 287: 12445–12454.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Karlseder J, Hoke K, Mirzoeva OK, Bakkenist C, Kastan MB, Petrini JH et al. The telomeric protein TRF2 binds the ATM kinase and can inhibit the ATM-dependent DNA damage response. PLoS Biol 2004; 2: E240.

    PubMed  PubMed Central  Google Scholar 

  66. Okamoto K, Bartocci C, Ouzounov I, Diedrich JK, Yates JR 3rd, Denchi EL . A two-step mechanism for TRF2-mediated chromosome-end protection. Nature 2013; 494: 502–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. O'Sullivan RJ, Karlseder J . Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 2010; 11: 171–181.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT . ATM activation by oxidative stress. Science 2010; 330: 517–521.

    CAS  PubMed  Google Scholar 

  69. Alexander A, Cai SL, Kim J, Nanez A, Sahin M, MacLean KH et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci USA 2010; 107: 4153–4158.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 2004; 431: 997–1002.

    CAS  PubMed  Google Scholar 

  71. Semlitsch M, Shackelford RE, Zirkl S, Sattler W, Malle E . ATM protects against oxidative stress induced by oxidized low-density lipoprotein. DNA Repair 2011; 10: 848–860.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Halaby MJ, Hibma JC, He J, Yang DQ . ATM protein kinase mediates full activation of Akt and regulates glucose transporter 4 translocation by insulin in muscle cells. Cell Signal 2008; 20: 1555–1563.

    CAS  PubMed  Google Scholar 

  73. Armata HL, Golebiowski D, Jung DY, Ko HJ, Kim JK, Sluss HK . Requirement of the ATM/p53 tumor suppressor pathway for glucose homeostasis. Mol Cell Biol 2010; 30: 5787–5794.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Bencokova Z, Kaufmann MR, Pires IM, Lecane PS, Giaccia AJ, Hammond EM . ATM activation and signaling under hypoxic conditions. Mol Cell Biol 2009; 29: 526–537.

    CAS  PubMed  Google Scholar 

  75. Cam H, Easton JB, High A, Houghton PJ . mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1alpha. Mol Cell 2010; 40: 509–520.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Pospelova TV, Demidenko ZN, Bukreeva EI, Pospelov VA, Gudkov AV, Blagosklonny MV . Pseudo-DNA damage response in senescent cells. Cell Cycle 2009; 8: 4112–4118.

    CAS  PubMed  Google Scholar 

  77. Acosta JC, O'Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 2008; 133: 1006–1018.

    CAS  PubMed  Google Scholar 

  78. Rodier F, Coppe JP, Patil CK, Hoeijmakers WA, Munoz DP, Raza SR et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 2009; 11: 973–979.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Rashi-Elkeles S, Elkon R, Shavit S, Lerenthal Y, Linhart C, Kupershtein A et al. Transcriptional modulation induced by ionizing radiation: p53 remains a central player. Mol Oncol 2011; 5: 336–348.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wu ZH, Shi Y, Tibbetts RS, Miyamoto S . Molecular linkage between the kinase ATM and NF-kappaB signaling in response to genotoxic stimuli. Science 2006; 311: 1141–1146.

    CAS  PubMed  Google Scholar 

  81. Wu ZH, Wong ET, Shi Y, Niu J, Chen Z, Miyamoto S et al. ATM- and NEMO-dependent ELKS ubiquitination coordinates TAK1-mediated IKK activation in response to genotoxic stress. Mol Cell 2010; 40: 75–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 2012; 491: 399–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wuerzberger-Davis SM, Nakamura Y, Seufzer BJ, Miyamoto S . NF-kappaB activation by combinations of NEMO SUMOylation and ATM activation stresses in the absence of DNA damage. Oncogene 2007; 26: 641–651.

    CAS  PubMed  Google Scholar 

  84. Lee MH, Mabb AM, Gill GB, Yeh ET, Miyamoto S . NF-kappaB induction of the SUMO protease SENP2: A negative feedback loop to attenuate cell survival response to genotoxic stress. Mol Cell 2011; 43: 180–191.

    PubMed  PubMed Central  Google Scholar 

  85. Wu ZH, Miyamoto S . Induction of a pro-apoptotic ATM-NF-kappaB pathway and its repression by ATR in response to replication stress. EMBO J 2008; 27: 1963–1973.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Barlow C, Hirotsune S, Paylor R, Liyanage M, Eckhaus M, Collins F et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 1996; 86: 159–171.

    CAS  PubMed  Google Scholar 

  87. Elson A, Wang Y, Daugherty CJ, Morton CC, Zhou F, Campos-Torres J et al. Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proc Natl Acad Sci USA 1996; 93: 13084–13089.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Xu Y, Ashley T, Brainerd EE, Bronson RT, Meyn MS, Baltimore D . Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev 1996; 10: 2411–2422.

    CAS  PubMed  Google Scholar 

  89. Liao MJ, Van Dyke T . Critical role for Atm in suppressing V(D)J recombination-driven thymic lymphoma. Genes Dev 1999; 13: 1246–1250.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kwong LN, Weiss KR, Haigis KM, Dove WF . Atm is a negative regulator of intestinal neoplasia. Oncogene 2008; 27: 1013–1018.

    CAS  PubMed  Google Scholar 

  91. Williams BR, Mirzoeva OK, Morgan WF, Lin J, Dunnick W, Petrini JH . A murine model of Nijmegen breakage syndrome. Curr Biol 2002; 12: 648–653.

    CAS  PubMed  Google Scholar 

  92. Yamamoto K, Wang Y, Jiang W, Liu X, Dubois RL, Lin CS et al. Kinase-dead ATM protein causes genomic instability and early embryonic lethality in mice. J Cell Biol 2012; 198: 305–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Daniel JA, Pellegrini M, Lee BS, Guo Z, Filsuf D, Belkina NV et al. Loss of ATM kinase activity leads to embryonic lethality in mice. J Cell Biol 2012; 198: 295–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Spring K, Ahangari F, Scott SP, Waring P, Purdie DM, Chen PC et al. Mice heterozygous for mutation in Atm, the gene involved in ataxia-telangiectasia, have heightened susceptibility to cancer. Nat Genet 2002; 32: 185–190.

    CAS  PubMed  Google Scholar 

  95. Umesako S, Fujisawa K, Iiga S, Mori N, Takahashi M, Hong DP et al. Atm heterozygous deficiency enhances development of mammary carcinomas in p53 heterozygous knockout mice. Breast Cancer Res 2005; 7: R164–R170.

    CAS  PubMed  Google Scholar 

  96. Westphal CH, Rowan S, Schmaltz C, Elson A, Fisher DE, Leder P . atm and p53 cooperate in apoptosis and suppression of tumorigenesis, but not in resistance to acute radiation toxicity. Nat Genet 1997; 16: 397–401.

    CAS  PubMed  Google Scholar 

  97. Armata HL, Shroff P, Garlick DE, Penta K, Tapper AR, Sluss HK . Loss of p53 Ser18 and Atm results in embryonic lethality without cooperation in tumorigenesis. PLoS One 2011; 6: e24813.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Li M, Fang X, Baker DJ, Guo L, Gao X, Wei Z et al. The ATM-p53 pathway suppresses aneuploidy-induced tumorigenesis. Proc Natl Acad Sci USA 2010; 107: 14188–14193.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang YA, Elson A, Leder P . Loss of p21 increases sensitivity to ionizing radiation and delays the onset of lymphoma in atm-deficient mice. Proc Natl Acad Sci USA 1997; 94: 14590–14595.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Darlington Y, Nguyen TA, Moon SH, Herron A, Rao P, Zhu C et al. Absence of Wip1 partially rescues Atm deficiency phenotypes in mice. Oncogene 2012; 31: 1155–1165.

    CAS  PubMed  Google Scholar 

  101. Wu J, Chen Y, Lu LY, Wu Y, Paulsen MT, Ljungman M et al. Chfr and RNF8 synergistically regulate ATM activation. Nat Struct Mol Biol 2011; 18: 761–768.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Menisser-de Murcia J, Mark M, Wendling O, Wynshaw-Boris A, de Murcia G . Early embryonic lethality in PARP-1 Atm double-mutant mice suggests a functional synergy in cell proliferation during development. Mol Cell Biol 2001; 21: 1828–1832.

    CAS  PubMed  Google Scholar 

  103. Zha S, Sekiguchi J, Brush JW, Bassing CH, Alt FW . Complementary functions of ATM and H2AX in development and suppression of genomic instability. Proc Natl Acad Sci USA 2008; 105: 9302–9306.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Zannini L, Buscemi G, Kim JE, Fontanella E, Delia D . DBC1 phosphorylation by ATM/ATR inhibits SIRT1 deacetylase in response to DNA damage. J Mol Cell Biol 2012; 4: 294–303.

    CAS  PubMed  Google Scholar 

  105. Ando K, Kernan JL, Liu PH, Sanda T, Logette E, Tschopp J et al. PIDD death-domain phosphorylation by ATM controls prodeath versus prosurvival PIDDosome signaling. Mol Cell 2012; 47: 681–693.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Sahu RP, Batra S, Srivastava SK . Activation of ATM/Chk1 by curcumin causes cell cycle arrest and apoptosis in human pancreatic cancer cells. Br J Cancer 2009; 100: 1425–1433.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. He L, Nan MH, Oh HC, Kim YH, Jang JH, Erikson RL et al. Asperlin induces G(2)/M arrest through ROS generation and ATM pathway in human cervical carcinoma cells. Biochem Biophys Res Commun 2011; 409: 489–493.

    CAS  PubMed  Google Scholar 

  108. Hong YS, Hong SW, Kim SM, Jin DH, Shin JS, Yoon DH et al. Bortezomib induces G2-M arrest in human colon cancer cells through ROS-inducible phosphorylation of ATM-CHK1. Int J Oncol 2012; 41: 76–82.

    CAS  PubMed  Google Scholar 

  109. Song L, Lin C, Wu Z, Gong H, Zeng Y, Wu J et al. miR-18a impairs DNA damage response through downregulation of ataxia telangiectasia mutated (ATM) kinase. PLoS One 2011; 6: e25454.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Le Guezennec X, Bulavin DV . WIP1 phosphatase at the crossroads of cancer and aging. Trends Biochem Sci 2010; 35: 109–114.

    CAS  PubMed  Google Scholar 

  111. Wang L, Mosel AJ, Oakley GG, Peng A . Deficient DNA damage signaling leads to chemoresistance to cisplatin in oral cancer. Mol Cancer Ther 2012; 11: 2401–2409.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Bhatia N, Xiao TZ, Rosenthal KA, Siddiqui IA, Thiyagarajan S, Smart B et al. MAGE-C2 promotes growth and tumorigenicity of melanoma cells, phosphorylation of KAP1, and DNA damage repair. J Invest Dermatol 2012; 133: 759–767.

    PubMed  PubMed Central  Google Scholar 

  113. Mahajan K, Coppola D, Rawal B, Chen YA, Lawrence HR, Engelman RW et al. Ack1-mediated androgen receptor phosphorylation modulates radiation resistance in castration-resistant prostate cancer. J Biol Chem 2012; 287: 22112–22122.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ripka S, Neesse A, Riedel J, Bug E, Aigner A, Poulsom R et al. CUX1: target of Akt signalling and mediator of resistance to apoptosis in pancreatic cancer. Gut 2010; 59: 1101–1110.

    CAS  PubMed  Google Scholar 

  115. Vadnais C, Davoudi S, Afshin M, Harada R, Dudley R, Clermont PL et al. CUX1 transcription factor is required for optimal ATM/ATR-mediated responses to DNA damage. Nucleic Acids Res 2012; 40: 4483–4495.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 2006; 444: 633–637.

    CAS  PubMed  Google Scholar 

  117. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 2005; 434: 907–913.

    CAS  PubMed  Google Scholar 

  118. Halazonetis TD, Gorgoulis VG, Bartek J . An oncogene-induced DNA damage model for cancer development. Science 2008; 319: 1352–1355.

    CAS  PubMed  Google Scholar 

  119. Ai L, Skehan RR, Saydi J, Lin T, Ataxia-Telangiectasia Brown KD . Mutated (ATM)/nuclear factor kappa light chain enhancer of activated B cells (NFkappaB) signaling controls basal and DNA damage-induced transglutaminase 2 expression. J Biol Chem 2012; 287: 18330–18341.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Yang Y, Xia F, Hermance N, Mabb A, Simonson S, Morrissey S et al. A cytosolic ATM/NEMO/RIP1 complex recruits TAK1 to mediate the NF-kappaB and p38 mitogen-activated protein kinase (MAPK)/MAPK-activated protein 2 responses to DNA damage. Mol Cell Biol 2011; 31: 2774–2786.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Palmieri D, Valentino T, D'Angelo D, De Martino I, Postiglione I, Pacelli R et al. HMGA proteins promote ATM expression and enhance cancer cell resistance to genotoxic agents. Oncogene 2011; 30: 3024–3035.

    CAS  PubMed  Google Scholar 

  122. Yin H, Glass J . The phenotypic radiation resistance of CD44+/CD24(-or low) breast cancer cells is mediated through the enhanced activation of ATM signaling. PLoS One 2011; 6: e24080.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Pazolli E, Alspach E, Milczarek A, Prior J, Piwnica-Worms D, Stewart SA . Chromatin remodeling underlies the senescence-associated secretory phenotype of tumor stromal fibroblasts that supports cancer progression. Cancer Res 2012; 72: 2251–2261.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Li Y, Yang DQ . The ATM inhibitor KU-55933 suppresses cell proliferation and induces apoptosis by blocking Akt in cancer cells with overactivated Akt. Mol Cancer Ther 2010; 9: 113–125.

    PubMed  Google Scholar 

  125. Jinushi M, Chiba S, Baghdadi M, Kinoshita I, Dosaka-Akita H, Ito K et al. ATM-mediated DNA damage signals mediate immune escape through integrin-alphavbeta3-dependent mechanisms. Cancer Res 2012; 72: 56–65.

    CAS  PubMed  Google Scholar 

  126. Hayashida T, Takahashi F, Chiba N, Brachtel E, Takahashi M, Godin-Heymann N et al. HOXB9, a gene overexpressed in breast cancer, promotes tumorigenicity and lung metastasis. Proc Natl Acad Sci USA 2010; 107: 1100–1105.

    CAS  PubMed  Google Scholar 

  127. Wang N, Eckert KA, Zomorrodi AR, Xin P, Pan W, Shearer DA et al. Down-regulation of HtrA1 activates the epithelial-mesenchymal transition and ATM DNA damage response pathways. PloS One 2012; 7: e39446.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Chiba N, Comaills V, Shiotani B, Takahashi F, Shimada T, Tajima K et al. Homeobox B9 induces epithelial-to-mesenchymal transition-associated radioresistance by accelerating DNA damage responses. Proc Natl Acad Sci USA 2012; 109: 2760–2765.

    CAS  PubMed  Google Scholar 

  129. Lee J, Sung CO, Lee EJ, Do IG, Kim HC, Yoon SH et al. Metastasis of neuroendocrine tumors are characterized by increased cell proliferation and reduced expression of the ATM gene. PloS One 2012; 7: e34456.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Schalch DS, McFarlin DE, Barlow MH . An unusual form of diabetes mellitus in ataxia telangiectasia. N Engl J Med 1970; 282: 1396–1402.

    CAS  PubMed  Google Scholar 

  131. Schneider JG, Finck BN, Ren J, Standley KN, Takagi M, Maclean KH et al. ATM-dependent suppression of stress signaling reduces vascular disease in metabolic syndrome. Cell Metab 2006; 4: 377–389.

    CAS  PubMed  Google Scholar 

  132. Miles PD, Treuner K, Latronica M, Olefsky JM, Barlow C . Impaired insulin secretion in a mouse model of ataxia telangiectasia. Am J Physiol Endocrinol Metab 2007; 293: E70–E74.

    CAS  PubMed  Google Scholar 

  133. Cosentino C, Grieco D, Costanzo V . ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J 2011; 30: 546–555.

    CAS  PubMed  Google Scholar 

  134. Kruger A, Ralser M . ATM is a redox sensor linking genome stability and carbon metabolism. Sci Signal 2011; 4 pe17.

    PubMed  Google Scholar 

  135. Duan X, Ponomareva L, Veeranki S, Choubey D . IFI16 induction by glucose restriction in human fibroblasts contributes to autophagy through activation of the ATM/AMPK/p53 pathway. PLoS One 2011; 6: e19532.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Valentin-Vega YA, Maclean KH, Tait-Mulder J, Milasta S, Steeves M, Dorsey FC et al. Mitochondrial dysfunction in ataxia-telangiectasia. Blood 2012; 119: 1490–1500.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Ito K, Takubo K, Arai F, Satoh H, Matsuoka S, Ohmura M et al. Regulation of reactive oxygen species by Atm is essential for proper response to DNA double-strand breaks in lymphocytes. J Immunol 2007; 178: 103–110.

    CAS  PubMed  Google Scholar 

  138. Reliene R, Schiestl RH . Antioxidant N-acetyl cysteine reduces incidence and multiplicity of lymphoma in Atm deficient mice. DNA Repair 2006; 5: 852–859.

    CAS  PubMed  Google Scholar 

  139. Keimling M, Volcic M, Csernok A, Wieland B, Dork T, Wiesmuller L . Functional characterization connects individual patient mutations in ataxia telangiectasia mutated (ATM) with dysfunction of specific DNA double-strand break-repair signaling pathways. FASEB J 2011; 25: 3849–3860.

    CAS  PubMed  Google Scholar 

  140. Swift M, Reitnauer PJ, Morrell D, Chase CL . Breast and other cancers in families with ataxia-telangiectasia. N Engl J Med 1987; 316: 1289–1294.

    CAS  PubMed  Google Scholar 

  141. Reiman A, Srinivasan V, Barone G, Last JI, Wootton LL, Davies EG et al. Lymphoid tumours and breast cancer in ataxia telangiectasia; substantial protective effect of residual ATM kinase activity against childhood tumours. Br J Cancer 2011; 105: 586–591.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Digweed M, Sperling K . Nijmegen breakage syndrome: clinical manifestation of defective response to DNA double-strand breaks. DNA Repair 2004; 3 (8-9): 1207–1217.

    CAS  PubMed  Google Scholar 

  143. Stracker TH, Petrini JH . The MRE11 complex: starting from the ends. Nat Rev Mol Cell Biol 2011; 12: 90–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Thompson D, Duedal S, Kirner J, McGuffog L, Last J, Reiman A et al. Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst 2005; 97: 813–822.

    CAS  PubMed  Google Scholar 

  145. Renwick A, Thompson D, Seal S, Kelly P, Chagtai T, Ahmed M et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet 2006; 38: 873–875.

    CAS  PubMed  Google Scholar 

  146. Hollestelle A, Wasielewski M, Martens JW, Schutte M . Discovering moderate-risk breast cancer susceptibility genes. Curr Opin Genet Dev 2010; 20: 268–276.

    CAS  PubMed  Google Scholar 

  147. Goldgar DE, Healey S, Dowty JG, Da Silva L, Chen X, Spurdle AB et al. Rare variants in the ATM gene and risk of breast cancer. Breast Cancer Res 2011; 13: R73.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Roberts NJ, Jiao Y, Yu J, Kopelovich L, Petersen GM, Bondy ML et al. ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov 2012; 2: 41–46.

    CAS  PubMed  Google Scholar 

  149. Zenz T, Mertens D, Kuppers R, Dohner H, Stilgenbauer S . From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer 2010; 10: 37–50.

    CAS  PubMed  Google Scholar 

  150. Guarini A, Marinelli M, Tavolaro S, Bellacchio E, Magliozzi M, Chiaretti S et al. ATM gene alterations in chronic lymphocytic leukemia patients induce a distinct gene expression profile and predict disease progression. Haematologica 2012; 97: 47–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Skowronska A, Parker A, Ahmed G, Oldreive C, Davis Z, Richards S et al. Biallelic ATM inactivation significantly reduces survival in patients treated on the United Kingdom Leukemia Research Fund Chronic Lymphocytic Leukemia 4 Trial. J Clin Oncol 2012; 30: 4524–4532.

    CAS  PubMed  Google Scholar 

  152. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G et al. Patterns of somatic mutation in human cancer genomes. Nature 2007; 446: 153–158.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008; 455: 1069–1075.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Salimi M, Mozdarani H, Majidzadeh K . Expression pattern of ATM and cyclin D1 in ductal carcinoma, normal adjacent and normal breast tissues of Iranian breast cancer patients. Med Oncol 2011; 29: 1502–1509.

    PubMed  Google Scholar 

  155. Squatrito M, Brennan CW, Helmy K, Huse JT, Petrini JH, Holland EC . Loss of ATM/Chk2/p53 pathway components accelerates tumor development and contributes to radiation resistance in gliomas. Cancer Cell 2010; 18: 619–629.

    CAS  PubMed  Google Scholar 

  156. Seshagiri S, Stawiski EW, Durinck S, Modrusan Z, Storm EE, Conboy CB et al. Recurrent R-spondin fusions in colon cancer. Nature 2012; 488: 660–664.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Beggs AD, Jones A, El-Bahwary M, Abulafi M, Hodgson SV, Tomlinson IP . Whole-genome methylation analysis of benign and malignant colorectal tumours. J Pathol 2012; 229: 697–704.

    Google Scholar 

  158. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA . DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 2008; 8: 193–204.

    CAS  PubMed  Google Scholar 

  159. Jiang H, Reinhardt HC, Bartkova J, Tommiska J, Blomqvist C, Nevanlinna H et al. The combined status of ATM and p53 link tumor development with therapeutic response. Genes Dev 2009; 23: 1895–1909.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Bouwman P, Jonkers J . The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer 2012; 12: 587–598.

    CAS  PubMed  Google Scholar 

  161. Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB . p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 2007; 11: 175–189.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Song H, Hollstein M, Xu Y . p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol 2007; 9: 573–580.

    CAS  PubMed  Google Scholar 

  163. White JS, Choi S, Bakkenist CJ . Transient ATM kinase inhibition disrupts DNA damage-induced sister chromatid exchange. Sci Signal 2010; 3: ra44.

    PubMed  PubMed Central  Google Scholar 

  164. Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NM, Orr AI et al. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res 2004; 64: 9152–9159.

    CAS  PubMed  Google Scholar 

  165. Rainey MD, Charlton ME, Stanton RV, Kastan MB . Transient inhibition of ATM kinase is sufficient to enhance cellular sensitivity to ionizing radiation. Cancer Res 2008; 68: 7466–7474.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Golding SE, Rosenberg E, Valerie N, Hussaini I, Frigerio M, Cockcroft XF et al. Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion. Mol Cancer Ther 2009; 8: 2894–2902.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. White JS, Choi S, Bakkenist CJ . Irreversible chromosome damage accumulates rapidly in the absence of ATM kinase activity. Cell Cycle 2008; 7: 1277–1284.

    CAS  PubMed  Google Scholar 

  168. Prise KM, O'Sullivan JM . Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer 2009; 9: 351–360.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Roossink F, Wieringa HW, Noordhuis MG, Ten Hoor KA, Kok M, Slagter-Menkema L et al. The role of ATM and 53BP1 as predictive markers in cervical cancer. Int J Cancer 2012; 131: 2056–2066.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Olcina M, Lecane PS, Hammond EM . Targeting hypoxic cells through the DNA damage response. Clin Cancer Res 2010; 16: 5624–5629.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Kennedy RD, Chen CC, Stuckert P, Archila EM, De la Vega MA, Moreau LA et al. Fanconi anemia pathway-deficient tumor cells are hypersensitive to inhibition of ataxia telangiectasia mutated. J Clin Invest 2007; 117: 1440–1449.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Williamson CT, Muzik H, Turhan AG, Zamo A, O'Connor MJ, Bebb DG et al. ATM deficiency sensitizes mantle cell lymphoma cells to poly(ADP-ribose) polymerase-1 inhibitors. Mol Cancer Ther 2010; 9: 347–357.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Bryant HE, Helleday T . Inhibition of poly (ADP-ribose) polymerase activates ATM which is required for subsequent homologous recombination repair. Nucleic Acids Res 2006; 34: 1685–1691.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Sullivan KD, Padilla-Just N, Henry RE, Porter CC, Kim J, Tentler JJ et al. ATM and MET kinases are synthetic lethal with nongenotoxic activation of p53. Nat Chem Biol 2012; 8: 646–654.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Bunting SF, Callen E, Wong N, Chen HT, Polato F, Gunn A et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 2010; 141: 243–254.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Reaper PM, Griffiths MR, Long JM, Charrier JD, Maccormick S, Charlton PA et al. Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol 2011; 7: 428–430.

    CAS  PubMed  Google Scholar 

  177. Golding SE, Rosenberg E, Adams BR, Wignarajah S, Beckta JM, O'Connor MJ et al. Dynamic inhibition of ATM kinase provides a strategy for glioblastoma multiforme radiosensitization and growth control. Cell Cycle 2012; 11: 1167–1173.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Batey MA, Zhao Y, Kyle S, Richardson C, Slade A, Martin NM et al. Preclinical evaluation of a novel ATM inhibitor, KU59403, in vitro and in vivo in p53 functional and dysfunctional models of human cancer. Mol Cancer Ther 2013; 12: 959–967.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Huang J, Yang J, Maity B, Mayuzumi D, Fisher RA . Regulator of G protein signaling 6 mediates doxorubicin-induced ATM and p53 activation by a reactive oxygen species-dependent mechanism. Cancer Res 2011; 71: 6310–6319.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 2010; 141: 69–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Di Micco R, Sulli G, Dobreva M, Liontos M, Botrugno OA, Gargiulo G et al. Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer. Nat Cell Biol 2011; 13: 292–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Vazquez-Martin A, Oliveras-Ferraros C, Cufi S, Martin-Castillo B, Menendez JA . Metformin activates an ataxia telangiectasia mutated (ATM)/Chk2-regulated DNA damage-like response. Cell Cycle 2011; 10: 1499–1501.

    CAS  PubMed  Google Scholar 

  183. Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD . Metformin and reduced risk of cancer in diabetic patients. BMJ 2005; 330: 1304–1305.

    PubMed  PubMed Central  Google Scholar 

  184. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA et al. Diabetes and cancer: a consensus report. Diabetes Care 2010; 33: 1674–1685.

    PubMed  PubMed Central  Google Scholar 

  185. Bonanni B, Puntoni M, Cazzaniga M, Pruneri G, Serrano D, Guerrieri-Gonzaga A et al. Dual effect of metformin on breast cancer proliferation in a randomized presurgical trial. J Clin Oncol 2012; 30: 2593–2600.

    CAS  PubMed  Google Scholar 

  186. Zhou K, Bellenguez C, Spencer CC, Bennett AJ, Coleman RL, Tavendale R et al. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat Genet 2011; 43: 117–120.

    CAS  PubMed  Google Scholar 

  187. Taubes G . Cancer research. Cancer prevention with a diabetes pill? Science 2012; 335: 29.

    PubMed  Google Scholar 

  188. Pietzner J, Baer P, Duecker R, Merscher M, Satzger-Prodinger C, Bechmann I et al. Bone marrow transplantation improves the outcome of Atm-deficient mice through the migration of ATM-competent cells. Hum Mol Genet 2012; 22: 493–507.

    PubMed  Google Scholar 

  189. Kozlov SV, Graham ME, Jakob B, Tobias F, Kijas AW, Tanuji M et al. Autophosphorylation and ATM activation: additional sites add to the complexity. J Biol Chem 2011; 286: 9107–9119.

    CAS  PubMed  Google Scholar 

  190. Tian B, Yang Q, Mao Z . Phosphorylation of ATM by Cdk5 mediates DNA damage signalling and regulates neuronal death. Nat Cell Biol 2009; 11: 211–218.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Yang C, Tang X, Guo X, Niikura Y, Kitagawa K, Cui K et al. Aurora-B mediated ATM serine 1403 phosphorylation is required for mitotic ATM activation and the spindle checkpoint. Mol Cell 2011; 44: 597–608.

    PubMed  PubMed Central  Google Scholar 

  192. Fernandes N, Sun Y, Chen S, Paul P, Shaw RJ, Cantley LC et al. DNA damage-induced association of ATM with its target proteins requires a protein interaction domain in the N terminus of ATM. J Biol Chem 2005; 280: 15158–15164.

    CAS  PubMed  Google Scholar 

  193. Young DB, Jonnalagadda J, Gatei M, Jans DA, Meyn S, Khanna KK . Identification of domains of ataxia-telangiectasia mutated required for nuclear localization and chromatin association. J Biol Chem 2005; 280: 27587–27594.

    CAS  PubMed  Google Scholar 

  194. Smith GC, d'Adda di Fagagna F, Lakin ND, Jackson SP . Cleavage and inactivation of ATM during apoptosis. Mol Cell Biol 1999; 19: 6076–6084.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Chen S, Paul P, Price BD . ATM’s leucine-rich domain and adjacent sequences are essential for ATM to regulate the DNA damage response. Oncogene 2003; 22: 6332–6339.

    CAS  PubMed  Google Scholar 

  196. Perry J, Kleckner N . The ATRs, ATMs, and TORs are giant HEAT repeat proteins. Cell 2003; 112: 151–155.

    CAS  PubMed  Google Scholar 

  197. Llorca O, Rivera-Calzada A, Grantham J, Willison KR . Electron microscopy and 3D reconstructions reveal that human ATM kinase uses an arm-like domain to clamp around double-stranded DNA. Oncogene 2003; 22: 3867–3874.

    CAS  PubMed  Google Scholar 

  198. Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X . DOG 1.0: illustrator of protein domain structures. Cell Res 2009; 19: 271–273.

    CAS  PubMed  Google Scholar 

  199. Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A et al. The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer 2004; 91: 355–358.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N. Kanu for comments on the manuscript. We apologise to colleagues whose work was not cited due to space considerations. This work was supported by an ERC Grant (281661 ATMINDDR) to AB. The London Research Institute is supported by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Behrens.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cremona, C., Behrens, A. ATM signalling and cancer. Oncogene 33, 3351–3360 (2014). https://doi.org/10.1038/onc.2013.275

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.275

Keywords

This article is cited by

Search

Quick links