Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Targeting HPV16 E6-p300 interaction reactivates p53 and inhibits the tumorigenicity of HPV-positive head and neck squamous cell carcinoma

Abstract

The incidence of human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) has rapidly increased over the past 30 years, prompting the suggestion that an epidemic maybe on the horizon. Therefore, there is a clinical need to develop alternate therapeutic strategies to manage the growing number of HPV-positive HNSCC patients. High-risk HPV E6 inactivates p53 through two distinct mechanisms; association with E6AP to degrade p53 and association with p300 to block p300-mediated p53 acetylation and activation. In this study, we determined if targeting the E6-p300 interaction is an effective approach to reactivate p53 in HPV-positive HNSCC. Ectopic expression of the CH1 domain of p300 in HPV-positive HNSCC blocks the association between E6 and p300, increases total and acetylated p53 levels and enhances p53 transcriptional activity. Moreover, expression of p21, miR-34a and miR-200c are increased, demonstrating functional p53 reactivation. CH1 overexpression in HPV-positive HNSCC has a global anticancer effect resulting in a decrease in cell proliferation and clonogenic survival and an increase in apoptosis. The in vivo tumor-initiating ability of HPV-positive HNSCC is severely compromised with CH1 overexpression, in part through a reduction in the cancer-initiating cell population. A novel small-molecule CH1 inhibitor, CH1iB, reactivates p53 and potentiates the anticancer activity of cis-platinum in HPV-positive HNSCC cells. Our work shows that CH1-domain inhibitors represent a novel class of p53-reactivation therapeutics for managing HPV-positive HNSCC patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kamangar F, Dores GM, Anderson WF . Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 2006; 24: 2137–2150.

    Article  PubMed  Google Scholar 

  2. Gillison ML, Koch WM, Capone RB, Spafford M, Westra WH, Wu L et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst 2000; 92: 709–720.

    Article  CAS  PubMed  Google Scholar 

  3. Klussmann JP, Gultekin E, Weissenborn SJ, Wieland U, Dries V, Dienes HP et al. Expression of p16 protein identifies a distinct entity of tonsillar carcinomas associated with human papillomavirus. Am J Pathol 2003; 162: 747–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Licitra L, Rossini C, Bossi P, Locati LD . Advances in the changing patterns of aetiology of head and neck cancers. Curr Opin Otolaryngol Head Neck Surg 2006; 14: 95–99.

    Article  PubMed  Google Scholar 

  5. Shiboski CH, Schmidt BL, Jordan RC . Tongue and tonsil carcinoma: increasing trends in the US population ages 20-44 years. Cancer 2005; 103: 1843–1849.

    Article  PubMed  Google Scholar 

  6. Sturgis EM, Cinciripini PM . Trends in head and neck cancer incidence in relation to smoking prevalence: an emerging epidemic of human papillomavirus-associated cancers? Cancer 2007; 110: 1429–1435.

    Article  PubMed  Google Scholar 

  7. Hammarstedt L, Lindquist D, Dahlstrand H, Romanitan M, Dahlgren LO, Joneberg J et al. Human papillomavirus as a risk factor for the increase in incidence of tonsillar cancer. Int J Cancer 2006; 119: 2620–2623.

    Article  CAS  PubMed  Google Scholar 

  8. Group FIS, Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N Engl J Med 2007; 356: 1915–1927.

    Article  Google Scholar 

  9. Laz TH, Rahman M, Berenson AB . An update on human papillomavirus vaccine uptake among 11-17 year old girls in the United States: National Health Interview Survey, 2010. Vaccine 2012; 30: 3534–3540.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Reiter PL, McRee AL, Kadis JA, Brewer NT . HPV vaccine and adolescent males. Vaccine 2012; 29: 5595–5602.

    Article  Google Scholar 

  11. Munoz N, Kjaer SK, Sigurdsson K, Iversen OE, Hernandez-Avila M, Wheeler CM et al. Impact of human papillomavirus (HPV)-6/11/16/18 vaccine on all HPV-associated genital diseases in young women. J Natl Cancer Inst 2010; 102: 325–339.

    Article  CAS  PubMed  Google Scholar 

  12. Sigurdsson K, Sigvaldason H, Gudmundsdottir T, Sigurdsson R, Briem H . The efficacy of HPV 16/18 vaccines on sexually active 18-23 year old women and the impact of HPV vaccination on organized cervical cancer screening. Acta Obstet Gynecol Scand 2009; 88: 27–35.

    Article  PubMed  Google Scholar 

  13. Balz V, Scheckenbach K, Gotte K, Bockmuhl U, Petersen I, Bier H . Is the p53 inactivation frequency in squamous cell carcinomas of the head and neck underestimated? Analysis of p53 exons 2-11 and human papillomavirus 16/18 E6 transcripts in 123 unselected tumor specimens. Cancer Res 2003; 63: 1188–1191.

    CAS  PubMed  Google Scholar 

  14. Agrawal N, Frederick MJ, Pickering CR, Bettegowda C, Chang K, Li RJ et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 2011; 333: 1154–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A et al. The mutational landscape of head and neck squamous cell carcinoma. Science 2011; 333: 1157–1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huibregtse JM, Scheffner M, Howley PM . A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J 1991; 10: 4129–4135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM . The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 1993; 75: 495–505.

    Article  CAS  PubMed  Google Scholar 

  18. Talis AL, Huibregtse JM, Howley PM . The role of E6AP in the regulation of p53 protein levels in human papillomavirus (HPV)-positive and HPV-negative cells. J Biol Chem 1998; 273: 6439–6445.

    Article  CAS  PubMed  Google Scholar 

  19. Zimmermann H, Degenkolbe R, Bernard HU, O’Connor MJ . The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J Virol 1999; 73: 6209–6219.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Patel D, Huang SM, Baglia LA, McCance DJ . The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J 1999; 18: 5061–5072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thomas MC, Chiang CM . E6 oncoprotein represses p53-dependent gene activation via inhibition of protein acetylation independently of inducing p53 degradation. Mol Cell 2005; 17: 251–264.

    Article  CAS  PubMed  Google Scholar 

  22. Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E et al. MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J 2002; 21: 6236–6245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li M, Luo J, Brooks CL, Gu W . Acetylation of p53 inhibits its ubiquitination by Mdm2. J Biol Chem 2002; 277: 50607–50611.

    Article  CAS  PubMed  Google Scholar 

  24. Beerheide W, Bernard HU, Tan YJ, Ganesan A, Rice WG, Ting AE . Potential drugs against cervical cancer: zinc-ejecting inhibitors of the human papillomavirus type 16 E6 oncoprotein. J Natl Cancer Inst 1999; 91: 1211–1220.

    Article  CAS  PubMed  Google Scholar 

  25. Beerheide W, Sim MM, Tan YJ, Bernard HU, Ting AE . Inactivation of the human papillomavirus-16 E6 oncoprotein by organic disulfides. Bioorg Med Chem 2000; 8: 2549–2560.

    Article  CAS  PubMed  Google Scholar 

  26. Courtete J, Sibler AP, Zeder-Lutz G, Dalkara D, Oulad-Abdelghani M, Zuber G et al. Suppression of cervical carcinoma cell growth by intracytoplasmic codelivery of anti-oncoprotein E6 antibody and small interfering RNA. Mol Cancer Ther 2007; 6: 1728–1735.

    Article  CAS  PubMed  Google Scholar 

  27. Beer-Romero P, Glass S, Rolfe M . Antisense targeting of E6AP elevates p53 in HPV-infected cells but not in normal cells. Oncogene 1997; 14: 595–602.

    Article  CAS  PubMed  Google Scholar 

  28. Koivusalo R, Mialon A, Pitkanen H, Westermarck J, Hietanen S . Activation of p53 in cervical cancer cells by human papillomavirus E6 RNA interference is transient, but can be sustained by inhibiting endogenous nuclear export-dependent p53 antagonists. Cancer Res 2006; 66: 11817–11824.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao CY, Szekely L, Bao W, Selivanova G . Rescue of p53 function by small-molecule RITA in cervical carcinoma by blocking E6-mediated degradation. Cancer Res 2010; 70: 3372–3381.

    Article  CAS  PubMed  Google Scholar 

  30. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 2007; 104: 973–978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Clay MR, Tabor M, Owen JH, Carey TE, Bradford CR, Wolf GT et al. Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head Neck 2010; 32: 1195–1201.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen YC, Chen YW, Hsu HS, Tseng LM, Huang PI, Lu KH et al. Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Biophys Res Commun 2009; 385: 307–313.

    Article  CAS  PubMed  Google Scholar 

  33. Grossman SR, Perez M, Kung AL, Joseph M, Mansur C, Xiao ZX et al. p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol Cell 1998; 2: 405–415.

    Article  CAS  PubMed  Google Scholar 

  34. Kobet E, Zeng X, Zhu Y, Keller D, Lu H . MDM2 inhibits p300-mediated p53 acetylation and activation by forming a ternary complex with the two proteins. Proc Natl Acad Sci USA 2000; 97: 12547–12552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dames SA, Martinez-Yamout M, De Guzman RN, Dyson HJ, Wright PE . Structural basis for Hif-1 alpha/CBP recognition in the cellular hypoxic response. Proc Natl Acad Sci USA 2002; 99: 5271–5276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Freedman SJ, Sun ZY, Poy F, Kung AL, Livingston DM, Wagner G et al. Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1 alpha. Proc Natl Acad Sci USA 2002; 99: 5367–5372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Patgiri A, Jochim AL, Arora PS . A hydrogen bond surrogate approach for stabilization of short peptide sequences in alpha-helical conformation. Acc Chem Res 2008; 41: 1289–1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Henchey LK, Kushal S, Dubey R, Chapman RN, Olenyuk BZ, Arora PS . Inhibition of hypoxia inducible factor 1-transcription coactivator interaction by a hydrogen bond surrogate alpha-helix. J Am Chem Soc 2010; 132: 941–943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gu W, Roeder RG . Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 1997; 90: 595–606.

    Article  CAS  PubMed  Google Scholar 

  40. Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M et al. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 2009; 460: 1132–1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A et al. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 2009; 460: 1140–1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM et al. Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 2009; 460: 1145–1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cicalese A, Bonizzi G, Pasi CE, Faretta M, Ronzoni S, Giulini B et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 2009; 138: 1083–1095.

    Article  CAS  PubMed  Google Scholar 

  44. Choi YJ, Lin CP, Ho JJ, He X, Okada N, Bu P et al. miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat Cell Biol. Nov 13: 1353–1360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17: 211–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol. Mar 13: 317–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pan Q, Gorin MA, Teknos TN . Pharmacotherapy of head and neck squamous cell carcinoma. Expert Opin Pharmacother 2009; 10: 2291–2302.

    Article  CAS  PubMed  Google Scholar 

  48. White JS, Weissfeld JL, Ragin CC, Rossie KM, Martin CL, Shuster M et al. The influence of clinical and demographic risk factors on the establishment of head and neck squamous cell carcinoma cell lines. Oral Oncol 2007; 43: 701–712.

    Article  CAS  PubMed  Google Scholar 

  49. Patgiri A, Menzenski MZ, Mahon AB, Arora PS . Solid-phase synthesis of short alpha-helices stabilized by the hydrogen bond surrogate approach. Nat Protoc 2010; 5: 1857–1865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Institutes of Health grants R01CA135096 (to QP) and R01GM073943 (to PSA); Mary E. and John W. Alford Cancer Research Endowment Fund; The Michelle Theado Memorial Grant from the Joan Bisesi Fund for Head and Neck Oncology Research; and Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Ohio State University Comprehensive Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q Pan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, X., Piao, L., Bullock, B. et al. Targeting HPV16 E6-p300 interaction reactivates p53 and inhibits the tumorigenicity of HPV-positive head and neck squamous cell carcinoma. Oncogene 33, 1037–1046 (2014). https://doi.org/10.1038/onc.2013.25

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.25

Keywords

This article is cited by

Search

Quick links