Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PPM1A is a RelA phosphatase with tumor suppressor-like activity

Abstract

Nuclear factor-κB (NF-κB) signaling contributes to human disease processes, notably inflammatory diseases and cancer. NF-κB has a role in tumorigenesis and tumor growth, as well as promotion of metastases. Mechanisms responsible for abnormal NF-κB activation are not fully elucidated; however, RelA phosphorylation, particularly at serine residues S536 and S276, is critical for RelA function. Kinases that phosphorylate RelA promote oncogenic behaviors, suggesting that phosphatases targeting RelA could have tumor-inhibiting activities; however, few RelA phosphatases have been identified. Here, we identified tumor inhibitory and RelA phosphatase activities of the protein phosphatase 2C (PP2C) phosphatase family member, PPM1A. We show that PPM1A directly dephosphorylated RelA at residues S536 and S276 and selectively inhibited NF-κB transcriptional activity, resulting in decreased expression of monocyte chemotactic protein-1/chemokine (C–C motif) ligand 2 and interleukin-6, cytokines implicated in cancer metastasis. PPM1A depletion enhanced NF-κB-dependent cell invasion, whereas PPM1A expression inhibited invasion. Analyses of human expression data revealed that metastatic prostate cancer deposits had lower PPM1A expression compared with primary tumors without distant metastases. A hematogenous metastasis mouse model revealed that PPM1A expression inhibited bony metastases of prostate cancer cells after vascular injection. In summary, our findings suggest that PPM1A is a RelA phosphatase that regulates NF-κB activity and that PPM1A has tumor suppressor-like activity. Our analyses also suggest that PPM1A inhibits prostate cancer metastases and as neither gene deletions nor inactivating mutations of PPM1A have been described, increasing PPM1A activity in tumors represents a potential therapeutic strategy to inhibit NF-κB signaling or bony metastases in human cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Grivennikov SI, Karin M . Inflammation and oncogenesis: a vicious connection. Curr Opin Genet Dev 2010; 20: 65–71.

    CAS  Google Scholar 

  2. Orlowski RZ, Baldwin J, Albert S . NF-[kappa]B as a therapeutic target in cancer. Trends Mol Med 2002; 8: 385–389.

    Article  CAS  Google Scholar 

  3. Wang J, An H, Mayo MW, Baldwin AS, WG Yarbrough . LZAP a putative tumor suppressor, selectively inhibits NF-kappaB. Cancer Cell 2007; 12: 239–251.

    Article  CAS  Google Scholar 

  4. Arun P, Brown MS, Ehsanian R, Chen Z, Van Waes C . Nuclear NF-kappaB p65 phosphorylation at serine 276 by protein kinase A contributes to the malignant phenotype of head and neck cancer. Clin Cancer Res 2009; 15: 5974–5984.

    Article  CAS  Google Scholar 

  5. Cao Y, Karin M . NF-kappaB in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 2003; 8: 215–223.

    Article  Google Scholar 

  6. Wu JT, Kral JG . The NF-kappaB/IkappaB signaling system: a molecular target in breast cancer therapy. J Surg Res 2005; 123: 158–169.

    Article  CAS  Google Scholar 

  7. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ . Cancer statistics, 2007. CA Cancer J Clin 2007; 57: 43–66.

    Article  Google Scholar 

  8. Nelson WG, De Marzo AM, Isaacs WB . Prostate cancer. N Engl J Med 2003; 349: 366–381.

    Article  CAS  Google Scholar 

  9. Min J, Zaslavsky A, Fedele G, McLaughlin SK, Reczek EE, De Raedt T et al. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nat Med 2010; 16: 286–294.

    Article  CAS  Google Scholar 

  10. Zhang J, Patel L, Pienta KJ . Targeting chemokine (C–C motif) ligand 2 (CCL2) as an example of translation of cancer molecular biology to the clinic. Prog Mol Biol Transl Sci 2010; 95: 31–53.

    Article  CAS  Google Scholar 

  11. Craig MJ, Loberg RD . CCL2 (Monocyte Chemoattractant Protein-1) in cancer bone metastases. Cancer Metastasis Rev 2006; 25: 611–619.

    Article  CAS  Google Scholar 

  12. Chen L-F, Green WC . Shaping the nuclear action of NF-κB. Nat Rev Mol Cell Biol 2004; 5: 392–401.

    Article  CAS  Google Scholar 

  13. Neumann M, Naumann M . Beyond IkappaBs: alternative regulation of NF-kappaB activity. FASEB J 2007; 21: 2642–2654.

    Article  CAS  Google Scholar 

  14. Sakurai H, Suzuki S, Kawasaki N, Nakano H, Okazaki T, Chino A et al. Tumor necrosis factor-alpha-induced IKK phosphorylation of NF-kappaB p65 on serine 536 is mediated through the TRAF2, TRAF5, and TAK1 signaling pathway. J Biol Chem 2003; 278: 36916–36923.

    Article  CAS  Google Scholar 

  15. Zhong H, May MJ, Jimi E, Ghosh S . The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1. Mol Cell 2002; 9: 625–636.

    Article  CAS  Google Scholar 

  16. Nelson DE, Ihekwaba AE, Elliott M, Johnson JR, Gibney CA, Foreman BE et al. Oscillations in NF-kappaB signaling control the dynamics of gene expression. Science 2004; 306: 704–708.

    Article  CAS  Google Scholar 

  17. Yang J, Fan GH, Wadzinski BE, Sakurai H, Richmond A . Protein phosphatase 2A interacts with and directly dephosphorylates RelA. J Biol Chem 2001; 276: 47828–47833.

    Article  CAS  Google Scholar 

  18. Chew J, Biswas S, Shreeram S, Humaidi M, Wong ET, Dhillion MK et al. WIP1 phosphatase is a negative regulator of NF-kappaB signalling. Nat Cell Biol 2009; 11: 659–666.

    Article  CAS  Google Scholar 

  19. Lin X, Duan X, Liang YY, Su Y, Wrighton KH, Long J et al. PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling. Cell 2006; 125: 915–928.

    Article  CAS  Google Scholar 

  20. Lammers T, Lavi S . Role of type 2C protein phosphatases in growth regulation and in cellular stress signaling. Crit Rev Biochem Mol Biol 2007; 42: 437–461.

    Article  CAS  Google Scholar 

  21. Shohat M, Ben-Meir D, Lavi S . Protein phosphatase magnesium dependent 1A (PPM1A) plays a role in the differentiation and survival processes of nerve cells. PLoS ONE 2012; 7: e32438.

    Article  CAS  Google Scholar 

  22. Zhang B, Zhou Z, Lin H, Lv X, Fu J, Lin P et al. Protein phosphatase 1A (PPM1A) is involved in human cytotrophoblast cell invasion and migration. Histochem Cell Biol 2009; 132: 169–179.

    Article  CAS  Google Scholar 

  23. Sun W, Yu Y, Dotti G, Shen T, Tan X, Savoldo B et al. PPM1A and PPM1B act as IKKbeta phosphatases to terminate TNFalpha-induced IKKbeta-NF-kappaB activation. Cell Signal 2009; 21: 95–102.

    Article  CAS  Google Scholar 

  24. Buss H, Dorrie A, Schmitz ML, Frank R, Livingstone M, Resch K et al. Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity. J Biol Chem 2004; 279: 49571–49574.

    Article  CAS  Google Scholar 

  25. Schwabe RF, Sakurai H . IKKbeta phosphorylates p65 at S468 in transactivaton domain 2. FASEB J 2005; 19: 1758–1760.

    Article  CAS  Google Scholar 

  26. Perkins ND . Post-translational modifications regulating the activity and function of the nuclear factor kappa B pathway. Oncogene 2006; 25: 6717–6730.

    Article  CAS  Google Scholar 

  27. Kim JS, Rho B, Lee TH, Lee JM, Kim SJ, Park JH . The interaction of hepatitis B virus X protein and protein phosphatase type 2 Calpha and its effect on IL-6. Biochem Biophys Res Commun 2006; 351: 253–258.

    Article  CAS  Google Scholar 

  28. Ueda A, Okuda K, Ohno S, Shirai A, Igarashi T, Matsunaga K et al. NF-kappa B and Sp1 regulate transcription of the human monocyte chemoattractant protein-1 gene. J Immunol 1994; 153: 2052–2063.

    CAS  Google Scholar 

  29. Ueda A, Ishigatsubo Y, Okubo T, Yoshimura T . Transcriptional regulation of the human monocyte chemoattractant protein-1 gene. Cooperation of two NF-kappaB sites and NF-kappaB/Rel subunit specificity. J Biol Chem 1997; 272: 31092–31099.

    Article  CAS  Google Scholar 

  30. Ghosh S, Hayden MS . New regulators of NF-kappaB in inflammation. Nat Rev Immunol 2008; 8: 837–848.

    Article  CAS  Google Scholar 

  31. Oeckinghaus A, Ghosh S . The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 2009; 1: a000034.

    Article  Google Scholar 

  32. Wang CY, Mayo MW, Baldwin AS Jr . TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 1996; 274: 784–787.

    Article  CAS  Google Scholar 

  33. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011; 475: 222–225.

    Article  CAS  Google Scholar 

  34. Zhang J, Patel L, Pienta KJCC . chemokine ligand 2 (CCL2) promotes prostate cancer tumorigenesis and metastasis. Cytokine Growth Factor Rev 2010; 21: 41–48.

    Article  CAS  Google Scholar 

  35. Lu Y, Cai Z, Galson DL, Xiao G, Liu Y, George DE et al. Monocyte chemotactic protein-1 (MCP-1) acts as a paracrine and autocrine factor for prostate cancer growth and invasion. Prostate 2006; 66: 1311–1318.

    Article  CAS  Google Scholar 

  36. Chandran UR, Ma C, Dhir R, Bisceglia M, Lyons-Weiler M, Liang W et al. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer 2007; 7: 64.

    Article  Google Scholar 

  37. Yu YP, Landsittel D, Jing L, Nelson J, Ren B, Liu L et al. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol 2004; 22: 2790–2799.

    Article  CAS  Google Scholar 

  38. Wu TT, Sikes RA, Cui Q, Thalmann GN, Kao C, Murphy CF et al. Establishing human prostate cancer cell xenografts in bone: induction of osteoblastic reaction by prostate-specific antigen-producing tumors in athymic and SCID/bg mice using LNCaP and lineage-derived metastatic sublines. Int J Cancer 1998; 77: 887–894.

    Article  CAS  Google Scholar 

  39. Ghosh S, Karin M . Missing pieces in the NF-kappaB puzzle. Cell 2002; 109 (Suppl 1): S81–S96.

    Article  CAS  Google Scholar 

  40. Gardam S, Beyaert R . The kinase NIK as a therapeutic target in multiple myeloma. Expert Opin Ther Targets 2011; 15: 207–218.

    Article  CAS  Google Scholar 

  41. Chaturvedi MM, Sung B, Yadav VR, Kannappan R, Aggarwal BB . NF-kappaB addiction and its role in cancer: 'one size does not fit all’. Oncogene 2011; 30: 1615–1630.

    Article  CAS  Google Scholar 

  42. Yamaguchi H, Durell SR, Chatterjee DK, Anderson CW, Appella E . The Wip1 phosphatase PPM1D dephosphorylates SQ/TQ motifs in checkpoint substrates phosphorylated by PI3K-like kinases. Biochemistry 2007; 46: 12594–12603.

    Article  CAS  Google Scholar 

  43. Yamaguchi H, Minopoli G, Demidov ON, Chatterjee DK, Anderson CW, Durell SR et al. Substrate specificity of the human protein phosphatase 2Cdelta, Wip1. Biochemistry 2005; 44: 5285–5294.

    Article  CAS  Google Scholar 

  44. Browning DD, Pan ZK, Prossnitz ER, Ye RD . Cell type- and developmental stage-specific activation of NF-kappaB by fMet-Leu-Phe in myeloid cells. J Biol Chem 1997; 272: 7995–8001.

    Article  CAS  Google Scholar 

  45. Smale ST . Hierarchies of NF-kappaB target-gene regulation. Nat Immunol 2011; 12: 689–694.

    Article  CAS  Google Scholar 

  46. Azevedo A, Cunha V, Teixeira AL, Medeiros R . IL-6/IL-6R as a potential key signaling pathway in prostate cancer development. World J Clin Oncol 2011; 2: 384–396.

    Article  Google Scholar 

  47. Wolf MJ, Hoos A, Bauer J, Boettcher S, Knust M, Weber A et al. Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and p38MAPK pathway. Cancer Cell 2012; 22: 91–105.

    Article  CAS  Google Scholar 

  48. Mueller L, Seggern LV, Schumacher J, Goumas F, Wilms C, Braun F et al. TNF-alpha similarly induces IL-6 and MCP-1 in fibroblasts from colorectal liver metastases and normal liver fibroblasts. Biochem Biophys Res Commun 2010; 397: 586–591.

    Article  CAS  Google Scholar 

  49. Sosnoski DM, Krishnan V, Kraemer WJ, Dunn-Lewis C, Mastro AM . Changes in cytokines of the bone microenvironment during breast cancer metastasis. Int J Breast Cancer 2012; 2012: 160265.

    Article  Google Scholar 

  50. Zollo M, Di Dato V, Spano D, De Martino D, Liguori L, Marino N et al. Targeting monocyte chemotactic protein-1 synthesis with bindarit induces tumor regression in prostate and breast cancer animal models. Clin Exp Metastasis 2012; 29: 585–601.

    Article  CAS  Google Scholar 

  51. Coward J, Kulbe H, Chakravarty P, Leader D, Vassileva V, Leinster DA et al. Interleukin-6 as a therapeutic target in human ovarian cancer. Clin Cancer Res 2011; 17: 6083–6096.

    Article  CAS  Google Scholar 

  52. Lammers T, Peschke P, Ehemann V, Debus J, Slobodin B, Lavi S et al. Role of PP2Calpha in cell growth, in radio- and chemosensitivity, and in tumorigenicity. Mol Cancer 2007; 6: 65.

    Article  Google Scholar 

  53. Lu X, Ma O, Nguyen TA, Jones SN, Oren M, Donehower LA . The Wip1 phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop. Cancer Cell 2007; 12: 342–354.

    Article  CAS  Google Scholar 

  54. An H, Lu X, Liu D, Yarbrough WG . LZAP inhibits p38 MAPK (p38) phosphorylation and activity by facilitating p38 association with the wild-type p53 induced phosphatase 1 (WIP1). PLoS ONE 2011; 6: e16427.

    Article  CAS  Google Scholar 

  55. Abdelmohsen K, Pullmann R Jr, Lal A, Kim HH, Galban S, Yang X et al. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell 2007; 25: 543–557.

    Article  CAS  Google Scholar 

  56. Drake JM, Gabriel CL, Henry MD . Assessing tumor growth and distribution in a model of prostate cancer metastasis using bioluminescence imaging. Clin Exp Metastasis 2005; 22: 674–684.

    Article  Google Scholar 

Download references

Acknowledgements

We thank W Sun, LA Donehower, N Perkins, Reuven Agami and IM Verma for providing constructs and cell lines. We are extremely grateful to A Richmond, R Matusik, J McLean, A Weaver, D Webb and to Baker Lab members for insightful advice. This work was supported by Grant NIH R01 DE013173 (to WGY) and by funds provided through an endowment from Barry and Amy Baker to the Barry Baker Laboratory for Head & Neck Oncology, from the Vanderbilt Ingram Cancer Center, from the Department of Otolaryngology at Vanderbilt University and from the Vanderbilt Bill Wilkerson Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W G Yarbrough.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, X., An, H., Jin, R. et al. PPM1A is a RelA phosphatase with tumor suppressor-like activity. Oncogene 33, 2918–2927 (2014). https://doi.org/10.1038/onc.2013.246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.246

Keywords

This article is cited by

Search

Quick links