Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Utility of a bacterial infection model to study epithelial–mesenchymal transition, mesenchymal–epithelial transition or tumorigenesis

Abstract

DCLK1 and Lgr5 have recently been identified as markers of quiescent and cycling stem cells in the small intestinal crypts, respectively. Epithelial–mesenchymal transition (EMT) is a key development program that is often activated during cancer invasion and metastasis, and also imparts a self-renewal capability to disseminating cancer cells. Utilizing the Citrobacter rodentium (CR)-induced transmissible murine colonic hyperplasia (TMCH) model, we observed a relative decrease in DCLK1 expression in the colonic crypts, with significant shift towards stromal staining at peak (12 days post infection) hyperplasia, whereas staining for Lgr5 and Msi-1 increased several fold. When hyperplasia was regressing (days 20–34), an expansion of DCLK1+ve cells in the CR-infected crypts compared with that seen in uninfected control was recorded. Purified colonic crypt cells exhibiting epigenetic modulation of the transforming growth factor-β (TGFβ), Wnt and Notch pathways on 12 or 34 days post infection formed monolayers in vitro, and underwent trans-differentiation into fibroblast-like cells that stained positive for vimentin, fibronectin and DCLK1. These cells when trypsinized and regrown in soft agar, formed colonospheres/organoids that developed into crypt-like structures (colonoids) in Matrigel and stained positive for DCLK1. Mice exhibiting 12 or 34 days of TMCH were given azoxymethane once for 8 h (Gp1) or weekly for 3 weeks (Gp2), and subjected to crypt isolation. Crypt cells from Gp1 animals formed monolayers as well as colonospheres in soft agar and nodules/tumors in nude mice. Crypt cells isolated from Gp2 animals failed to form the monolayers, but developed into colonospheres in soft agar and nodules/tumors in nude mice. Thus, both hyperplasia and increased presence of DCLK1+ve cells promote cellular transformation in response to a second hit. The TMCH model, therefore, provides an excellent template to study how alterations in intestinal stem cells promote trans-differentiation, crypt regeneration or colon carcinogenesis following bacterial infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Humphries A, Wright NA . Colonic crypt organization and tumorigenesis. Nat Rev Cancer 2008; 8: 415–424.

    Article  CAS  PubMed  Google Scholar 

  2. van der Flier LG, Clevers H . Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 2009; 71: 241–260.

    Article  CAS  PubMed  Google Scholar 

  3. May R, Sureban SM, Hoang N, Riehl TE, Lightfoot SA, Ramanujam R et al. Doublecortin and CaM kinase-like-1 and leucine-rich-repeat-containing G-protein-coupled receptor mark quiescent and cycling intestinal stem cells, respectively. Stem Cells 2009; 27: 2571–2579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Reya T, Morrison SJ, Clarke MF, Weissman IL . Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–111.

    Article  CAS  PubMed  Google Scholar 

  5. Radisky DC, LaBarge MA . Epithelial-mesenchymal transition and the stem cell phenotype. Cell Stem Cell 2008; 2: 511–522.

    Article  CAS  PubMed  Google Scholar 

  6. Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA et al. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci USA 2001; 98: 10356–10361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Polyak K, Weinberg RA . Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9: 265–273.

    Article  CAS  PubMed  Google Scholar 

  9. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  CAS  PubMed  Google Scholar 

  10. Rubio D, Garcia S, Paz MF, De la Cueva T, Lopez-Fernandez LA, Lloyd AC et al. Molecular characterization of spontaneous mesenchymal stem cell transformation. PLoS One 2008; 3: e1398.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sipos F, Leiszter K, Tulassay Z . Effect of ageing on colonic mucosal regeneration. World J Gastroenterol 2011; 17: 2981–2986.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Moustakas A, Heldin CH . Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 2007; 98: 1512–1520.

    Article  CAS  PubMed  Google Scholar 

  13. Julien S, Puig I, Caretti E, Bonaventure J, Nelles L, van Roy F et al. Activation of NF-kappaB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene 2007; 26: 7445–7456.

    Article  CAS  PubMed  Google Scholar 

  14. Jeanes A, Gottardi CJ, Yap AS . Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 2008; 27: 6920–6929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Peinado H, Olmeda D, Cano A . Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 2007; 7: 415–428.

    Article  CAS  PubMed  Google Scholar 

  16. Hollier BG, Evans K, Mani SA . The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies. J Mammary Gland Biol Neoplasia 2009; 14: 29–43.

    Article  PubMed  Google Scholar 

  17. Hamon MA, Cossart P . Histone modifications and chromatin remodeling during bacterial infections. Cell Host Microbe 2008; 4: 100–109.

    Article  CAS  PubMed  Google Scholar 

  18. Colgan SP, Taylor CT . Hypoxia: an alarm signal during intestinal inflammation. Nat Rev Gastroenterol Hepatol 2010; 7: 281–287.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Eltzschig HK, Carmeliet P . Hypoxia and inflammation. N Engl J Med 2011; 364: 656–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu MZ, Tsai YP, Yang MH, Huang CH, Chang SY, Chang CC et al. Interplay between HDAC3 and WDR5 is essential for hypoxia-induced epithelial-mesenchymal transition. Mol Cell 2011; 43: 811–822.

    Article  CAS  PubMed  Google Scholar 

  21. Pilpilidis I, Kountouras J, Zavos C, Katsinelos P . Upper gastrointestinal carcinogenesis: H. pylori and stem cell cross-talk. J Surg Res 2011; 166: 255–264.

    Article  PubMed  Google Scholar 

  22. Saito Y, Murata-Kamiya N, Hirayama T, Ohba Y, Hatakeyama M . Conversion of Helicobacter pylori CagA from senescence inducer to oncogenic driver through polarity-dependent regulation of p21. J Exp Med 2010; 207: 2157–2174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yin Y, Grabowska AM, Clarke PA, Whelband E, Robinson K, Argent RH et al. Helicobacter pylori potentiates epithelial:mesenchymal transition in gastric cancer: links to soluble HB-EGF, gastrin and matrix metalloproteinase-7. Gut 2010; 59: 1037–1045.

    Article  CAS  PubMed  Google Scholar 

  24. Bataille F, Rohrmeier C, Bates R, Weber A, Rieder F, Brenmoehl J et al. Evidence for a role of epithelial mesenchymal transition during pathogenesis of fistulae in Crohn’s disease. Inflamm Bowel Dis 2008; 14: 1514–1527.

    Article  PubMed  Google Scholar 

  25. Zhao L, Yang R, Cheng L, Wang M, Jiang Y, Wang S . LPS-induced epithelial-mesenchymal transition of intrahepatic biliary epithelial cells. J Surg Res 2011; 171: 819–825.

    Article  CAS  PubMed  Google Scholar 

  26. Mundy R, MacDonald TT, Dougan G, Frankel G, Wiles S . Citrobacter rodentium of mice and man. Cell Microbiol 2005; 7: 1697–1706.

    Article  CAS  PubMed  Google Scholar 

  27. Borenshtein D, McBee ME, Schauer DB . Utility of the Citrobacter rodentium infection model in laboratory mice. Curr Opin Gastroenterol 2008; 24: 32–37.

    Article  PubMed  Google Scholar 

  28. Deng W, Li Y, Hardwidge PR, Frey EA, Pfuetzner RA, Lee S et al. Regulation of type III secretion hierarchy of translocators and effectors in attaching and effacing bacterial pathogens. Infect Immun 2005; 73: 2135–2146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barthold SW, Coleman GL, Jacoby RO, Livestone EM, Jonas AM . Transmissible murine colonic hyperplasia. Vet Pathol 1978; 15: 223–236.

    Article  CAS  PubMed  Google Scholar 

  30. Sellin JH, Umar S, Xiao J, Morris AP . Increased beta-catenin expression and nuclear translocation accompany cellular hyperproliferation in vivo. Cancer Res 2001; 61: 2899–2906.

    CAS  PubMed  Google Scholar 

  31. Umar S, Morris AP, Kourouma F, Sellin JH . Dietary pectin and calcium inhibit colonic proliferation in vivo by differing mechanisms. Cell Prolif 2003; 36: 361–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Umar S, Wang Y, Sellin JH . Epithelial proliferation induces novel changes in APC expression. Oncogene 2005; 24: 6709–6718.

    Article  CAS  PubMed  Google Scholar 

  33. Umar S, Wang Y, Morris AP, Sellin JH . Dual alterations in casein kinase 1ɛ and GSK-3β modulate β-catenin stability in hyperproliferating colonic epithelia. Am J Physiol 2007; 292: G599–G607.

    CAS  Google Scholar 

  34. Sellin JH, Wang Y, Singh P, Umar S . β-Catenin stabilization imparts crypt progenitor phenotype to hyperproliferating colonic epithelia. Exp Cell Res 2009; 315: 97–109.

    Article  CAS  PubMed  Google Scholar 

  35. Ahmed I, Chandrakesan P, Tawfik O, Xia L, Anant S, Umar S . Critical roles of Notch and Wnt/β-catenin pathways in the regulation of hyperplasia and/or colitis in response to bacterial infection. Infect Immun 2012; 80: 3107–3121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ahmed I, Roy B, Chandrakesan P, Venugopal A, Xia L, Jensen R et al. Evidence of functional cross talk between the Notch and NF-κB pathways in non-neoplastic hyperproliferating colonic epithelium. Am J Physiol Gastrointest Liver Physiol 2013; 304: G356–G370.

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Kourouma F, Guang-Sheng X, Umar S . Citrobacter rodentium-induced NF-κB activation in hyperproliferating colonic epithelia: role of p65 (Ser536) phosphorylation. Br J Pharmacol 2006; 148: 814–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chandrakesan P, Ahmed I, Wang Y, Sarkar S, Singh P, Peleg S et al. Novel changes in NF-κB activity during progression and regression phases of hyperplasia: role of ERK1/2 and p38. J Biol Chem 2010; 285: 33485–33498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chandrakesan P, Ahmed I, Chinthalapally A, Singh P, Awasthi S, Anant S et al. Distinct compartmentalization of nuclear factor-κB activity in the crypt and crypt-denuded lamina propria precede and accompany hyperplasia and/or colitis following bacterial infection. Infect Immun 2012; 80: 753–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hongpaisan J . Inhibition of proliferation of contaminating fibroblasts by D-valine in cultures of smooth muscle cells from human myometrium. Cell Biol Int 2000; 24: 1–7.

    Article  CAS  PubMed  Google Scholar 

  41. Sun NC, Sun CR, Tennant RW, Hsie AW . Selective growth of some rodent epithelial cells in a medium containing citrulline. Proc Natl Acad Sci USA 1979; 76: 1819–1823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Whitehead RH, Demmler K, Rockman SP, Watson NK . Clonogenic growth of epithelial cells from normal colonic mucosa from both mice and humans. Gastroenterology 1999; 117: 858–865.

    Article  CAS  PubMed  Google Scholar 

  43. Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, Birembaut P et al. Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Res 2003; 63: 2658–2664.

    CAS  PubMed  Google Scholar 

  44. Xi Y, Wei Y, Sennino B, Ulsamer A, Kwan I, Brumwell AN et al. Identification of pY654-β-catenin as a critical co-factor in hypoxia-inducible factor-1α signaling and tumor responses to hypoxia. Oncogene 2013; 32: 5048–5057.

    Article  CAS  PubMed  Google Scholar 

  45. Barthold SW, Jonas AM . Morphogenesis of early 1, 2-dimethylhydrazine-induced lesions and latent period reduction of colon carcinogenesis in mice by a variant of Citrobacter freundii. Cancer Res 1977; 37: 4352–4360.

    CAS  PubMed  Google Scholar 

  46. Fodde R, Brabletz T . Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol 2007; 19: 150–158.

    Article  CAS  PubMed  Google Scholar 

  47. Schmalhofer O, Brabletz S, T Brabletz . E-cadherin beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 2009; 28: 151–166.

    Article  CAS  PubMed  Google Scholar 

  48. Sánchez-Tilló E, Lázaro A, Torrent R, Cuatrecasas M, Vaquero EC, Castells A et al. ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1. Oncogene 2010; 29: 3490–3500.

    Article  PubMed  Google Scholar 

  49. Francí C, Gallén M, Alameda F, Baró T, Iglesias M, Virtanen I et al. Snail1 protein in the stroma as a new putative prognosis marker for colon tumors. PLoS One 2009; 4: e5595.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Liu X, Li J, Xiong J, Li M, Zhang Y, Zheng Q . Notch-dependent expression of epithelial-mesenchymal transition markers in cholangiocytes after liver transplantation. Hepatol Res 2012; 42: 1024–1038.

    Article  CAS  PubMed  Google Scholar 

  51. Brabletz S, Bajdak K, Meidhof S, Burk U, Niedermann G, Firat E et al. The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J 2011; 30: 770–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zavadil J, Cermak L, Soto-Nieves N, Böttinger EP . Integration of TGF-β/Smad and Jagged1/Notch signaling in epithelial-to-mesenchymal transition. EMBO J 2004; 23: 1155–1165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Niessen K, Fu Y, Chang L, Hoodless PA, McFadden D, Karsan A . Slug is a direct Notch target required for initiation of cardiac cushion cellularization. J Cell Biol 2008; 182: 315–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hofman P, Vouret-Craviari V . Microbes-induced EMT at the crossroad of inflammation and cancer. Gut Microbes 2012; 3: 1–10.

    Article  Google Scholar 

  55. Betis F, Brest P, Hofman V, Guignot J, Bernet-Camard MF, Rossi B et al. The Afa/Dr adhesins of diffusely adhering Escherichia coli stimulate interleukin-8 secretion, activate mitogen-activated protein kinases and promote polymorphonuclear transepithelial migration in T84 polarized epithelial cells. Infect Immun 2003; 71: 1068–1074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Betis F, Brest P, Hofman V, Guignot J, Kansau I, Rossi B et al. Afa/Dr diffusely adhering Escherichia coli infection in T84 cell monolayers induces increased neutrophil transepithelial migration, which in turn promotes cytokine-dependent upregulation of decay-accelerating factor (CD55), the receptor for Afa/Dr adhesins. Infect Immun 2003; 71: 1774–1783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cane G, Moal VL, Pages G, Servin AL, Hofman P, Vouret-Craviari V . Upregulation of intestinal vascular endothelial growth factor by Afa/Dr diffusely adhering Escherichia coli. PLoS One 2007; 2: 1359.

    Article  Google Scholar 

  58. Zhang Q, Bai X, Chen W, Ma T, Hu Q, Liang C et al. Wnt/β-catenin signaling enhances hypoxia-induced epithelial-mesenchymal transition in hepatocellular carcinoma via crosstalk with hif-1α signaling. Carcinogenesis 2013; 34: 962–973.

    Article  PubMed  Google Scholar 

  59. Mukherjee T, Kim WS, Mandal L, Banerjee U . Interaction between Notch and Hif-alpha in development and survival of Drosophila blood cells. Science 2011; 332: 1210–1213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumor cells. Nat Cell Biol 2000; 2: 84–89.

    Article  CAS  PubMed  Google Scholar 

  61. Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2: 76–83.

    Article  CAS  PubMed  Google Scholar 

  62. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004; 117: 927–939.

    Article  CAS  PubMed  Google Scholar 

  63. Flier SN, Tanjore H, Kokkotou EG, Sugimoto H, Zeisberg M, Kalluri R . Identification of epithelial to mesenchymal transition as a novel source of fibroblasts in intestinal fibrosis. J Biol Chem 2010; 285: 20202–20212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Brabletz T . To differentiate or not–routes towards metastasis. Nat Rev Cancer 2012; 12: 425–436.

    Article  CAS  PubMed  Google Scholar 

  65. Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci USA 2011; 108: 7950–7955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Newman JV, Kosaka T, Sheppard BJ, Fox JG, Schauer DB . Bacterial infection promotes colon tumorigenesis in Apc(Min/+) mice. J Infect Dis 2001; 184: 227–230.

    Article  CAS  PubMed  Google Scholar 

  67. Sureban SM, May R, Ramalingam S, Subramaniam D, Natarajan G, Anant S et al. Selective blockade of DCAMKL-1 results in tumor growth arrest by a Let-7a microRNA-dependent mechanism. Gastroenterology 2009; 137: 649–659.

    Article  CAS  PubMed  Google Scholar 

  68. Sureban SM, May R, Mondalek FG, Qu D, Ponnurangam S, Pantazis P et al. Nanoparticle-based delivery of siDCAMKL-1 increases microRNA-144 and inhibits colorectal cancer tumor growth via a Notch-1 dependent mechanism. J Nanobiotechnology 2011; 9: 1–13.

    Article  Google Scholar 

  69. Bierne H, Hamon M, Cossart P . Epigenetics and bacterial infections. Cold Spring Harb Perspect Med 2012; 2: a010272.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Brown JB, Cheresh P, Goretsky T, Managlia E, Grimm GR, Ryu H et al. Epithelial phosphatidylinositol-3-kinase signaling is required for β-catenin activation and host defense against Citrobacter rodentium infection. Infect Immun 2011; 79: 1863–1872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Umar S, Sarkar S, Cowey S, Singh P . Activation of NF-kappaB is required for mediating proliferative and antiapoptotic effects of progastrin on proximal colonic crypts of mice, in vivo. Oncogene 2008; 27: 5599–5611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Umar S, Sarkar S, Wang Y, Singh P . Functional cross-talk between beta-catenin and NF-κB signaling pathways in colonic crypts of mice in response to progastrin. J Biol Chem 2009; 284: 22274–22284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ali N, Allam H, May R, Sureban SM, Bronze MS, Bader T et al. Hepatitis C virus-induced cancer stem cell-like signatures in cell culture and murine tumor xenografts. J Virol 2011; 85: 12292–12303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ponnurangam S, Mammen JM, Ramalingam S, He Z, Zhang Y, Umar S et al. Honokiol in combination with radiation targets notch signaling to inhibit colon cancer stem cells. Mol Cancer Ther 2012; 11: 963–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kwatra D, Subramaniam D, Ramamoorthy P, Standing D, Moran E, Velayutham R et al. Methanolic extracts of bitter melon inhibit colon cancer stem cells by affecting energy homeostasis and autophagy. Evid Based Complement Alternat Med 2013; 2013: 702869.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cun D, Jensen DK, Maltesen MJ, Bunker M, Whiteside P, Scurr D et al. High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization. Eur J Pharm Biopharm 2011; 77: 26–235.

    Article  CAS  PubMed  Google Scholar 

  77. Subramaniam D, Nicholes ND, Dhar A, Umar S, Awasthi V, Welch DR et al. 3,5-bis(2,4-difluorobenzylidene)-4-piperidone, a novel compound that affects pancreatic cancer growth and angiogenesis. Mol Cancer Ther 2011; 10: 2146–2156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health Grant R01 CA131413 (to SU), NIDDK’s U01DK085508–04S1 (to CWH) and start-up funds from the University of Kansas Medical Center, Kansas City, KS, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Umar.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandrakesan, P., Roy, B., Jakkula, L. et al. Utility of a bacterial infection model to study epithelial–mesenchymal transition, mesenchymal–epithelial transition or tumorigenesis. Oncogene 33, 2639–2654 (2014). https://doi.org/10.1038/onc.2013.210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.210

Keywords

This article is cited by

Search

Quick links