Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Desmoglein 3 promotes cancer cell migration and invasion by regulating activator protein 1 and protein kinase C-dependent-Ezrin activation

Abstract

Desmoglein 3 (Dsg3), the pemphigus vulgaris antigen, has recently been shown to be upregulated in squamous cell carcinoma (SCC) and has been identified as a good tumor-specific marker for clinical staging of cervical sentinel lymph nodes in head and neck SCC. However, little is known about its biological function in cancer. The actin-binding protein Ezrin and the activator protein 1 (AP-1) transcription factor are implicated in cancer progression and metastasis. Here, we report that Dsg3 regulates the activity of c-Jun/AP-1 as well as protein kinase C (PKC)-mediated phosphorylation of Ezrin-Thr567, which contributes to the accelerated motility of cancer cells. Ectopic expression of Dsg3 in cancer cell lines caused enhanced phosphorylation at Ezrin-Thr567 with concomitant augmented membrane protrusions, cell spreading and invasive phenotype. We showed that Dsg3 formed a complex with Ezrin at the plasma membrane that was required for its proper function of interacting with F-actin and CD44 as Dsg3 knockdown impaired these associations. The increased Ezrin phosphorylation in Dsg3-overexpressing cells could be abrogated substantially by various pharmacological inhibitors for Ser/Thr kinases, including PKC and Rho kinase that are known to activate Ezrin. Furthermore, a marked increase in c-Jun S63 phosphorylation, among others, was found in Dsg3-overexpressing cells and the activation of c-Jun/AP-1 was further supported by a luciferase reporter assay. Taken together, our study identifies a novel Dsg3-mediated c-Jun/AP-1 regulatory mechanism and PKC-dependent Ezrin phosphorylation that could be responsible for Dsg3-associated cancer metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Amagai M, Klaus-Kovtun V, Stanley JR . Autoantibodies against a novel epithelial cadherin in pemphigus vulgaris, a disease of cell adhesion. Cell 1991; 67: 869–877.

    CAS  PubMed  Google Scholar 

  2. Karpati S, Amagai M, Prussick R, Stanley JR . Pemphigus vulgaris antigen is a desmosomal desmoglein. Dermatology 1994; 189 (Suppl 1): 24–26.

    PubMed  Google Scholar 

  3. Amagai M, Karpati S, Klaus-Kovtun V, Udey MC, Stanley JR . Extracellular domain of pemphigus vulgaris antigen (desmoglein 3) mediates weak homophilic adhesion. J Invest Dermatol 1994; 103: 609–615.

    CAS  PubMed  Google Scholar 

  4. Calkins CC, Setzer SV, Jennings JM, Summers S, Tsunoda K, Amagai M et al. Desmoglein endocytosis and desmosome disassembly are coordinated responses to pemphigus autoantibodies. J Biol Chem 2006; 281: 7623–7634.

    CAS  PubMed  Google Scholar 

  5. Delva E, Jennings JM, Calkins CC, Kottke MD, Faundez V, Kowalczyk AP . Pemphigus vulgaris IgG-induced desmoglein-3 endocytosis and desmosomal disassembly are mediated by a clathrin- and dynamin-independent mechanism. J Biol Chem 2008; 283: 18303–18313.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kanno M, Isa Y, Aoyama Y, Yamamoto Y, Nagai M, Ozawa M et al. P120-catenin is a novel desmoglein 3 interacting partner: identification of the p120-catenin association site of desmoglein 3. Exp Cell Res 2008; 314: 1683–1692.

    CAS  PubMed  Google Scholar 

  7. Williamson L, Raess NA, Caldelari R, Zakher A, de Bruin A, Posthaus H et al. Pemphigus vulgaris identifies plakoglobin as key suppressor of c-Myc in the skin. EMBO J 2006; 25: 3298–3309.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tsang SM, Brown L, Lin K, Liu L, Piper K, O'Toole EA et al. Non-junctional human desmoglein 3 acts as an upstream regulator of Src in E-cadherin adhesion, a pathway possibly involved in the pathogenesis of pemphigus vulgaris. J Pathol 2012; 227: 81–93.

    CAS  PubMed  Google Scholar 

  9. Tsang SM, Brown L, Gadmor H, Gammon L, Fortune F, Wheeler A et al. Desmoglein 3 acting as an upstream regulator of Rho GTPases, Rac-1/Cdc42 in the regulation of actin organisation and dynamics. Exp Cell Res 2012; 318: 2269–2283.

    PubMed  Google Scholar 

  10. Tsang SM, Liu L, Teh MT, Wheeler A, Grose R, Hart IR et al. Desmoglein 3, via an interaction with E-cadherin, is associated with activation of Src. PLoS One 2010; 5: e14211.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chidgey M, Dawson C . Desmosomes: a role in cancer? Br J Cancer 2007; 96: 1783–1787.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Shinohara M, Hiraki A, Ikebe T, Nakamura S, Kurahara S, Shirasuna K et al. Immunohistochemical study of desmosomes in oral squamous cell carcinoma: correlation with cytokeratin and E-cadherin staining, and with tumour behaviour. J Pathol 1998; 184: 369–381.

    CAS  PubMed  Google Scholar 

  13. Teh MT, Parkinson EK, Thurlow JK, Liu F, Fortune F, Wan H . A molecular study of desmosomes identifies a desmoglein isoform switch in head and neck squamous cell carcinoma. J Oral Pathol Med 2011; 40: 67–76.

    CAS  PubMed  Google Scholar 

  14. Chen YJ, Chang JT, Lee L, Wang HM, Liao CT, Chiu CC et al. DSG3 is overexpressed in head neck cancer and is a potential molecular target for inhibition of oncogenesis. Oncogene 2007; 26: 467–476.

    CAS  PubMed  Google Scholar 

  15. Huang CC, Lee TJ, Chang PH, Lee YS, Chuang CC, Jhang YJ et al. Desmoglein 3 is overexpressed in inverted papilloma and squamous cell carcinoma of sinonasal cavity. Laryngoscope 2010; 120: 26–29.

    CAS  PubMed  Google Scholar 

  16. Savci-Heijink CD, Kosari F, Aubry MC, Caron BL, Sun Z, Yang P et al. The role of desmoglein-3 in the diagnosis of squamous cell carcinoma of the lung. Am J Pathol 2009; 174: 1629–1637.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Patel V, Martin D, Malhotra R, Marsh CA, Doci CL, Veenstra TD et al. DSG3 as a biomarker for the ultrasensitive detection of occult lymph node metastasis in oral cancer using nanostructured immunoarrays. Oral Oncol 2012; 49: 93–101.

    PubMed  PubMed Central  Google Scholar 

  18. Ferris RL, Xi L, Raja S, Hunt JL, Wang J, Gooding WE et al. Molecular staging of cervical lymph nodes in squamous cell carcinoma of the head and neck. Cancer Res 2005; 65: 2147–2156.

    CAS  PubMed  Google Scholar 

  19. Solassol J, Burcia V, Costes V, Lacombe J, Mange A, Barbotte E et al. Pemphigus vulgaris antigen mRNA quantification for the staging of sentinel lymph nodes in head and neck cancer. Br J Cancer 2010; 102: 181–187.

    CAS  PubMed  Google Scholar 

  20. Ferris RL, Xi L, Seethala RR, Chan J, Desai S, Hoch B et al. Intraoperative qRT-PCR for detection of lymph node metastasis in head and neck cancer. Clin Cancer Res 2011; 17: 1858–1866.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bretscher A . Rapid phosphorylation and reorganization of ezrin and spectrin accompany morphological changes induced in A-431 cells by epidermal growth factor. J Cell Biol 1989; 108: 921–930.

    CAS  PubMed  Google Scholar 

  22. Bretscher A . Regulation of cortical structure by the ezrin-radixin-moesin protein family. Curr Opin Cell Biol 1999; 11: 109–116.

    CAS  PubMed  Google Scholar 

  23. Tsukita S, Oishi K, Sato N, Sagara J, Kawai A, Tsukita S . ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J Cell Biol 1994; 126: 391–401.

    CAS  PubMed  Google Scholar 

  24. Legg JW, Isacke CM . Identification and functional analysis of the ezrin-binding site in the hyaluronan receptor, CD44. Curr Biol 1998; 8: 705–708.

    CAS  PubMed  Google Scholar 

  25. Reczek D, Berryman M, Bretscher A . Identification of EBP50: A PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family. J Cell Biol 1997; 139: 169–179.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fievet BT, Gautreau A, Roy C, Del ML, Mangeat P, Louvard D et al. Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin. J Cell Biol 2004; 164: 653–659.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yonemura S, Matsui T, Tsukita S, Tsukita S . Rho-dependent and -independent activation mechanisms of ezrin/radixin/moesin proteins: an essential role for polyphosphoinositides in vivo. J Cell Sci 2002; 115: 2569–2580.

    CAS  PubMed  Google Scholar 

  28. Zhu L, Zhou R, Mettler S, Wu T, Abbas A, Delaney J et al. High turnover of ezrin T567 phosphorylation: conformation, activity, and cellular function. Am J Physiol Cell Physiol 2007; 293: C874–C884.

    CAS  PubMed  Google Scholar 

  29. Hong SH, Osborne T, Ren L, Briggs J, Mazcko C, Burkett SS et al. Protein kinase C regulates ezrin-radixin-moesin phosphorylation in canine osteosarcoma cells. Vet Comp Oncol 2011; 9: 207–218.

    CAS  PubMed  Google Scholar 

  30. Jensen PV, Larsson LI . Actin microdomains on endothelial cells: association with CD44, ERM proteins, and signaling molecules during quiescence and wound healing. Histochem Cell Biol 2004; 121: 361–369.

    CAS  PubMed  Google Scholar 

  31. Legg JW, Lewis CA, Parsons M, Ng T, Isacke CM . A novel PKC-regulated mechanism controls CD44 ezrin association and directional cell motility. Nat Cell Biol 2002; 4: 399–407.

    CAS  PubMed  Google Scholar 

  32. Ng T, Parsons M, Hughes WE, Monypenny J, Zicha D, Gautreau A et al. Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility. EMBO J 2001; 20: 2723–2741.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ren L, Hong SH, Cassavaugh J, Osborne T, Chou AJ, Kim SY et al. The actin-cytoskeleton linker protein ezrin is regulated during osteosarcoma metastasis by PKC. Oncogene 2009; 28: 792–802.

    CAS  PubMed  Google Scholar 

  34. Wald FA, Oriolo AS, Mashukova A, Fregien NL, Langshaw AH, Salas PJ . Atypical protein kinase C (iota) activates ezrin in the apical domain of intestinal epithelial cells. J Cell Sci 2008; 121: 644–654.

    CAS  PubMed  Google Scholar 

  35. Chen Y, Wang D, Guo Z, Zhao J, Wu B, Deng H et al. Rho kinase phosphorylation promotes ezrin-mediated metastasis in hepatocellular carcinoma. Cancer Res 2011; 71: 1721–1729.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Matsui T, Maeda M, Doi Y, Yonemura S, Amano M, Kaibuchi K et al. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J Cell Biol 1998; 140: 647–657.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Stapleton G, Malliri A, Ozanne BW . Downregulated AP-1 activity is associated with inhibition of Protein-Kinase-C-dependent CD44 and ezrin localisation and upregulation of PKC theta in A431 cells. J Cell Sci 2002; 115: 2713–2724.

    CAS  PubMed  Google Scholar 

  38. Zhu L, Crothers J Jr., Zhou R, Forte JG . A possible mechanism for ezrin to establish epithelial cell polarity. Am J Physiol Cell Physiol 2010; 299: C431–C443.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Crepaldi T, Gautreau A, Comoglio PM, Louvard D, Arpin M . Ezrin is an effector of hepatocyte growth factor-mediated migration and morphogenesis in epithelial cells. J Cell Biol 1997; 138: 423–434.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hunter KW . Ezrin, a key component in tumor metastasis. Trends Mol Med 2004; 10: 201–204.

    CAS  PubMed  Google Scholar 

  41. Khanna C, Wan X, Bose S, Cassaday R, Olomu O, Mendoza A et al. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med 2004; 10: 182–186.

    CAS  PubMed  Google Scholar 

  42. Kobel M, Gradhand E, Zeng K, Schmitt WD, Kriese K, Lantzsch T et al. Ezrin promotes ovarian carcinoma cell invasion and its retained expression predicts poor prognosis in ovarian carcinoma. Int J Gynecol Pathol 2006; 25: 121–130.

    PubMed  Google Scholar 

  43. Yeh CN, Pang ST, Chen TW, Wu RC, Weng WH, Chen MF . Expression of ezrin is associated with invasion and dedifferentiation of hepatitis B related hepatocellular carcinoma. BMC Cancer 2009; 9: 233.

    PubMed  PubMed Central  Google Scholar 

  44. Elzagheid A, Korkeila E, Bendardaf R, Buhmeida A, Heikkila S, Vaheri A et al. Intense cytoplasmic ezrin immunoreactivity predicts poor survival in colorectal cancer. Hum Pathol 2008; 39: 1737–1743.

    CAS  PubMed  Google Scholar 

  45. Meng Y, Lu Z, Yu S, Zhang Q, Ma Y, Chen J . Ezrin promotes invasion and metastasis of pancreatic cancer cells. J Transl Med 2010; 8: 61.

    PubMed  PubMed Central  Google Scholar 

  46. Wang L, Gao Y, Tu Q, Hong J . Expression of Ezrin and E-cadherin in nasopharyngeal carcinoma and its significance. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2010; 35: 969–975.

    CAS  PubMed  Google Scholar 

  47. Wang YY, Chen WL, Huang ZQ, Yang ZH, Zhang B, Wang JG et al. Expression of the membrane-cytoskeletal linker Ezrin in salivary gland adenoid cystic carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011; 112: 96–104.

    PubMed  Google Scholar 

  48. Fan LL, Chen DF, Lan CH, Liu KY, Fang DC . Knockdown of ezrin via RNA interference suppresses Helicobacter pylori-enhanced invasion of gastric cancer cells. Cancer Biol Ther 2011; 11: 746–752.

    CAS  PubMed  Google Scholar 

  49. Xie JJ, Xu LY, Xie YM, Zhang HH, Cai WJ, Zhou F et al. Roles of ezrin in the growth and invasiveness of esophageal squamous carcinoma cells. Int J Cancer 2009; 124: 2549–2558.

    CAS  PubMed  Google Scholar 

  50. Wang HJ, Zhu JS, Zhang Q, Guo H, Dai YH, Xiong XP . RNAi-mediated silencing of ezrin gene reverses malignant behavior of human gastric cancer cell line SGC-7901. J Dig Dis 2009; 10: 258–264.

    CAS  PubMed  Google Scholar 

  51. Vasioukhin V, Bauer C, Yin M, Fuchs E . Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 2000; 100: 209–219.

    CAS  PubMed  Google Scholar 

  52. Nystrom ML, Thomas GJ, Stone M, Mackenzie IC, Hart IR, Marshall JF . Development of a quantitative method to analyse tumour cell invasion in organotypic culture. J Pathol 2005; 205: 468–475.

    CAS  PubMed  Google Scholar 

  53. Goley ED, Welch MD . The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol 2006; 7: 713–726.

    CAS  PubMed  Google Scholar 

  54. Tang F, Zou F, Peng Z, Huang D, Wu Y, Chen Y et al. N,N'-Dinitrosopiperazine-mediated ezrin phosphorylation via activating Rho kinase and protein kinase C involves in metastasis of nasopharyngeal carcinoma 6-10B cells. J Biol Chem 2011; 286: 36956–36967.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Cui Y, Li T, Zhang D, Han J . Expression of Ezrin and phosphorylated Ezrin (pEzrin) in pancreatic ductal adenocarcinoma. Cancer Invest 2010; 28: 242–247.

    CAS  PubMed  Google Scholar 

  56. Fehon RG, McClatchey AI, Bretscher A . Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol 2010; 11: 276–287.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Chuan YC, Pang ST, Cedazo-Minguez A, Norstedt G, Pousette A, Flores-Morales A . Androgen induction of prostate cancer cell invasion is mediated by ezrin. J Biol Chem 2006; 281: 29938–29948.

    CAS  PubMed  Google Scholar 

  58. Gary R, Bretscher A . Heterotypic and homotypic associations between ezrin and moesin, two putative membrane-cytoskeletal linking proteins. Proc Natl Acad Sci USA 1993; 90: 10846–10850.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Koivunen J, Aaltonen V, Koskela S, Lehenkari P, Laato M, Peltonen J . Protein kinase C alpha/beta inhibitor Go6976 promotes formation of cell junctions and inhibits invasion of urinary bladder carcinoma cells. Cancer Res 2004; 64: 5693–5701.

    CAS  PubMed  Google Scholar 

  60. Ivanov AI, Samarin SN, Bachar M, Parkos CA, Nusrat A . Protein kinase C activation disrupts epithelial apical junctions via ROCK-II dependent stimulation of actomyosin contractility. BMC Cell Biol 2009; 10: 36.

    PubMed  PubMed Central  Google Scholar 

  61. Bogatcheva NV, Zemskova MA, Gorshkov BA, Kim KM, Daglis GA, Poirier C et al. Ezrin, radixin, and moesin are phosphorylated in response to 2-methoxyestradiol and modulate endothelial hyperpermeability. Am J Respir Cell Mol Biol 2011; 45: 1185–1194.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sahai E, Marshall CJ . ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nat Cell Biol 2002; 4: 408–415.

    CAS  PubMed  Google Scholar 

  63. Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y . Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA 2004; 101: 7618–7623.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Berkowitz P, Hu P, Liu Z, Diaz LA, Enghild JJ, Chua MP et al. Desmosome signaling. Inhibition of p38MAPK prevents pemphigus vulgaris IgG-induced cytoskeleton reorganization. J Biol Chem 2005; 280: 23778–23784.

    CAS  PubMed  Google Scholar 

  65. Ozanne BW, Spence HJ, McGarry LC, Hennigan RF . Transcription factors control invasion: AP-1 the first among equals. Oncogene 2007; 26: 1–10.

    CAS  PubMed  Google Scholar 

  66. Johnston IM, Spence HJ, Winnie JN, McGarry L, Vass JK, Meagher L et al. Regulation of a multigenic invasion programme by the transcription factor, AP-1: re-expression of a down-regulated gene, TSC-36, inhibits invasion. Oncogene 2000; 19: 5348–5358.

    CAS  PubMed  Google Scholar 

  67. Elliott BE, Qiao H, Louvard D, Arpin M . Co-operative effect of c-Src and ezrin in deregulation of cell-cell contacts and scattering of mammary carcinoma cells. J Cell Biochem 2004; 92: 16–28.

    CAS  PubMed  Google Scholar 

  68. Ling ZQ, Mukaisho K, Yamamoto H, Chen KH, Asano S, Araki Y et al. Initiation of malignancy by duodenal contents reflux and the role of ezrin in developing esophageal squamous cell carcinoma. Cancer Sci 2010; 101: 624–630.

    CAS  PubMed  Google Scholar 

  69. Yonemura S, Hirao M, Doi Y, Takahashi N, Kondo T, Tsukita S et al. Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. J Cell Biol 1998; 140: 885–895.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Muller EJ, Williamson L, Kolly C, Suter MM . Outside-in signaling through integrins and cadherins: a central mechanism to control epidermal growth and differentiation? J Invest Dermatol 2008; 128: 501–516.

    CAS  PubMed  Google Scholar 

  71. Payne AS, Hanakawa Y, Amagai M, Stanley JR . Desmosomes and disease: pemphigus and bullous impetigo. Curr Opin Cell Biol 2004; 16: 536–543.

    CAS  PubMed  Google Scholar 

  72. Aoyama Y, Owada MK, Kitajima Y . A pathogenic autoantibody, pemphigus vulgaris-IgG, induces phosphorylation of desmoglein 3, and its dissociation from plakoglobin in cultured keratinocytes. Eur J Immunol 1999; 29: 2233–2240.

    CAS  PubMed  Google Scholar 

  73. Gliem M, Heupel WM, Spindler V, Harms GS, Waschke J . Actin reorganization contributes to loss of cell adhesion in pemphigus vulgaris. Am J Physiol Cell Physiol 2010; 299: C606–C613.

    CAS  PubMed  Google Scholar 

  74. Jeong HJ, Kim JH, Jeon S . Amphetamine-induced ERM Proteins Phosphorylation Is through PKCbeta Activation in PC12 Cells. Korean J Physiol Pharmacol 2011; 15: 245–249.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Belkina NV, Liu Y, Hao JJ, Karasuyama H, Shaw S . LOK is a major ERM kinase in resting lymphocytes and regulates cytoskeletal rearrangement through ERM phosphorylation. Proc Natl Acad Sci USA 2009; 106: 4707–4712.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Tamma G, Procino G, Svelto M, Valenti G . Hypotonicity causes actin reorganization and recruitment of the actin-binding ERM protein moesin in membrane protrusions in collecting duct principal cells. Am J Physiol Cell Physiol 2007; 292: C1476–C1484.

    CAS  PubMed  Google Scholar 

  77. Koss M, Pfeiffer GR, Wang Y, Thomas ST, Yerukhimovich M, Gaarde WA et al. Ezrin/radixin/moesin proteins are phosphorylated by TNF-alpha and modulate permeability increases in human pulmonary microvascular endothelial cells. J Immunol 2006; 176: 1218–1227.

    CAS  PubMed  Google Scholar 

  78. van BJ, de WJ, Divecha N, van Blitterswijk WJ . Translocation of diacylglycerol kinase theta from cytosol to plasma membrane in response to activation of G protein-coupled receptors and protein kinase C. J Biol Chem 2005; 280: 9870–9878.

    Google Scholar 

  79. Pujuguet P, Del ML, Gautreau A, Louvard D, Arpin M . Ezrin regulates E-cadherin-dependent adherens junction assembly through Rac1 activation. Mol Biol Cell 2003; 14: 2181–2191.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Morgan MR, Jazayeri M, Ramsay AG, Thomas GJ, Boulanger MJ, Hart IR et al. Psoriasin (S100A7) associates with integrin beta6 subunit and is required for alphavbeta6-dependent carcinoma cell invasion. Oncogene 2011; 30: 1422–1435.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr MT Teh, Professor K Parkinson, Dr SM Tsang, Dr MS Ikram and members of CDOS for helpful discussion and technical assistance. This work was supported by a British Skin Foundation-funded studentship awarded to HW and in part by the Institute of Dentistry as well as The Facial Surgery Research Foundation-Saving Faces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Wan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, L., Waseem, A., Cruz, I. et al. Desmoglein 3 promotes cancer cell migration and invasion by regulating activator protein 1 and protein kinase C-dependent-Ezrin activation. Oncogene 33, 2363–2374 (2014). https://doi.org/10.1038/onc.2013.186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.186

Keywords

This article is cited by

Search

Quick links