Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Prolactin suppresses a progestin-induced CK5-positive cell population in luminal breast cancer through inhibition of progestin-driven BCL6 expression

Abstract

Prolactin controls the development and function of milk-producing breast epithelia but also supports growth and differentiation of breast cancer, especially luminal subtypes. A principal signaling mediator of prolactin, Stat5, promotes cellular differentiation of breast cancer cells in vitro, and loss of active Stat5 in tumors is associated with antiestrogen therapy failure in patients. In luminal breast cancer, progesterone induces a cytokeratin-5 (CK5)-positive basal cell-like population. This population possesses characteristics of tumor stem cells including quiescence, therapy resistance and tumor-initiating capacity. Here we report that prolactin counteracts induction of the CK5-positive population by the synthetic progestin (Pg) R5020 in luminal breast cancer cells both in vitro and in vivo. CK5-positive cells were chemoresistant as determined by fourfold reduced rate of apoptosis following docetaxel exposure. Pg-induction of CK5 was preceded by marked upregulation of BCL6, an oncogene and transcriptional repressor critical for the maintenance of leukemia-initiating cells. Knockdown of BCL6 prevented induction of CK5-positive cell population by Pg. Prolactin suppressed Pg-induced BCL6 through Jak2-Stat5 but not Erk- or Akt-dependent pathways. In premenopausal but not postmenopausal patients with hormone receptor-positive breast cancer, tumor protein levels of CK5 correlated positively with BCL6, and high BCL6 or CK5 protein levels were associated with unfavorable clinical outcome. Suppression of Pg-induction of CK5-positive cells represents a novel prodifferentiation effect of prolactin in breast cancer. The present progress may have direct implications for breast cancer progression and therapy as loss of prolactin receptor-Stat5 signaling occurs frequently and BCL6 inhibitors currently being evaluated for lymphomas may have value for breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Keen JC, Davidson NE . The biology of breast carcinoma. Cancer 2003; 97 (3 Suppl): 825–833.

    Article  PubMed  Google Scholar 

  2. Lim E, Metzger-Filho O, Winer EP . The natural history of hormone receptor-positive breast cancer. Oncology (Williston Park) 2012; 26: 688–694, 696.

    Google Scholar 

  3. Reya T, Morrison SJ, Clarke MF, Weissman IL . Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–111.

    Article  CAS  PubMed  Google Scholar 

  4. Dean M, Fojo T, Bates S . Tumour stem cells and drug resistance. Nat Rev Cancer 2005; 5: 275–284.

    Article  CAS  PubMed  Google Scholar 

  5. Fillmore CM, Kuperwasser C . Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 2008; 10: R25.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008; 100: 672–679.

    Article  CAS  PubMed  Google Scholar 

  7. Sartorius CA, Harvell DM, Shen T, Horwitz KB . Progestins initiate a luminal to myoepithelial switch in estrogen-dependent human breast tumors without altering growth. Cancer Res 2005; 65: 9779–9788.

    Article  CAS  PubMed  Google Scholar 

  8. Horwitz KB, Dye WW, Harrell JC, Kabos P, Sartorius CA . Rare steroid receptor-negative basal-like tumorigenic cells in luminal subtype human breast cancer xenografts. Proc Natl Acad Sci USA 2008; 105: 5774–5779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kabos P, Haughian JM, Wang X, Dye WW, Finlayson C, Elias A et al. Cytokeratin 5 positive cells represent a steroid receptor negative and therapy resistant subpopulation in luminal breast cancers. Breast Cancer Res Treat 2011; 128: 45–55.

    Article  CAS  PubMed  Google Scholar 

  10. Haughian JM, Pinto MP, Harrell JC, Bliesner BS, Joensuu KM, Dye WW et al. Maintenance of hormone responsiveness in luminal breast cancers by suppression of Notch. Proc Natl Acad Sci USA 2011; 109: 2742–2747.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lee HJ, Ormandy CJ . Interplay between progesterone and prolactin in mammary development and implications for breast cancer. Mol Cell Endocrinol 2012; 357: 101–107.

    Article  CAS  PubMed  Google Scholar 

  12. Gouilleux F, Wakao H, Mundt M, Groner B . Prolactin induces phosphorylation of Tyr694 of Stat5 (MGF), a prerequisite for DNA binding and induction of transcription. EMBO J 1994; 13: 4361–4369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu X, Robinson GW, Gouilleux F, Groner B, Hennighausen L . Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissue. Proc Natl Acad Sci USA 1995; 92: 8831–8835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peck AR, Witkiewicz AK, Liu C, Stringer GA, Klimowicz AC, Pequignot E et al. Loss of nuclear localized and tyrosine phosphorylated Stat5 in breast cancer predicts poor clinical outcome and increased risk of antiestrogen therapy failure. J Clin Oncol 2011; 29: 2448–2458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamashita H, Nishio M, Ando Y, Zhang Z, Hamaguchi M, Mita K et al. Stat5 expression predicts response to endocrine therapy and improves survival in estrogen receptor-positive breast cancer. Endocr Relat Cancer 2006; 13: 885–893.

    Article  CAS  PubMed  Google Scholar 

  16. Nevalainen MT, Xie J, Torhorst J, Bubendorf L, Haas P, Kononen J et al. Signal transducer and activator of transcription-5 activation and breast cancer prognosis. J Clin Oncol 2004; 22: 2053–2060.

    Article  CAS  PubMed  Google Scholar 

  17. Cotarla I, Ren S, Zhang Y, Gehan E, Singh B, Furth PA . Stat5a is tyrosine phosphorylated and nuclear localized in a high proportion of human breast cancers. Int J Cancer 2004; 108: 665–671.

    Article  CAS  PubMed  Google Scholar 

  18. Peck AR, Witkiewicz AK, Liu C, Klimowicz AC, Stringer GA, Pequignot E et al. Low levels of Stat5a protein in breast cancer are associated with tumor progression and unfavorable clinical outcomes. Breast Cancer Res 2012; 14: R130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sultan AS, Xie J, LeBaron MJ, Ealley EL, Nevalainen MT, Rui H . Stat5 promotes homotypic adhesion and inhibits invasive characteristics of human breast cancer cells. Oncogene 2005; 24: 746–760.

    Article  CAS  PubMed  Google Scholar 

  20. Nouhi Z, Chughtai N, Hartley S, Cocolakis E, Lebrun JJ, Ali S . Defining the role of prolactin as an invasion suppressor hormone in breast cancer cells. Cancer Res 2006; 66: 1824–1832.

    Article  CAS  PubMed  Google Scholar 

  21. Sultan AS, Brim H, Sherif ZA . Co-overexpression of Janus kinase 2 and signal transducer and activator of transcription 5a promotes differentiation of mammary cancer cells through reversal of epithelial-mesenchymal transition. Cancer Sci 2008; 99: 272–279.

    Article  CAS  PubMed  Google Scholar 

  22. Duy C, Hurtz C, Shojaee S, Cerchietti L, Geng H, Swaminathan S et al. BCL6 enables Ph+ acute lymphoblastic leukaemia cells to survive BCR-ABL1 kinase inhibition. Nature 2011; 473: 384–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tran TH, Utama FE, Lin J, Yang N, Sjolund AB, Ryder A et al. Prolactin inhibits BCL6 expression in breast cancer through a Stat5a-dependent mechanism. Cancer Res 2010; 70: 1711–1721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Richer JK, Jacobsen BM, Manning NG, Abel MG, Wolf DM, Horwitz KB . Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J Biol Chem 2002; 277: 5209–5218.

    Article  CAS  PubMed  Google Scholar 

  25. Walker SR, Nelson EA, Zou L, Chaudhury M, Signoretti S, Richardson A et al. Reciprocal effects of STAT5 and STAT3 in breast cancer. Mol Cancer Res 2009; 7: 966–976.

    Article  CAS  PubMed  Google Scholar 

  26. Neilson LM, Zhu J, Xie J, Malabarba MG, Sakamoto K, Wagner KU et al. Coactivation of Jak1 positively modulates prolactin-Jak2 signaling in breast cancer: recruitment of ERK and Stat3 and enhancement of Akt and Stat5a/b Pathways. Mol Endocrinol 2007; 21: 2218–2232.

    Article  CAS  PubMed  Google Scholar 

  27. Knutson TP, Daniel AR, Fan D, Silverstein KA, Covington KR, Fuqua SA et al. Phosphorylated and sumoylation-deficient progesterone receptors drive proliferative gene signatures during breast cancer progression. Breast Cancer Res 2012; 14: R95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. Jama 2002; 288: 321–333.

    Article  CAS  PubMed  Google Scholar 

  29. Beral V . Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet 2003; 362: 419–427.

    Article  CAS  PubMed  Google Scholar 

  30. Horwitz KB, Sartorius CA . Progestins in hormone replacement therapies reactivate cancer stem cells in women with preexisting breast cancers: a hypothesis. J Clin Endocrinol Metab 2008; 93: 3295–3298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aldaz CM, Liao QY, LaBate M, Johnston DA . Medroxyprogesterone acetate accelerates the development and increases the incidence of mouse mammary tumors induced by dimethylbenzanthracene. Carcinogenesis 1996; 17: 2069–2072.

    Article  CAS  PubMed  Google Scholar 

  32. Liu R, Zhou Z, Zhao D, Chen C . The induction of KLF5 transcription factor by progesterone contributes to progesterone-induced breast cancer cell proliferation and dedifferentiation. Mol Endocrinol 2011; 25: 1137–1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tunyaplin C, Shaffer AL, Angelin-Duclos CD, Yu X, Staudt LM, Calame KL . Direct repression of prdm1 by Bcl-6 inhibits plasmacytic differentiation. J Immunol 2004; 173: 1158–1165.

    Article  CAS  PubMed  Google Scholar 

  34. Shaffer AL, Yu X, He Y, Boldrick J, Chan EP, Staudt LM . BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 2000; 13: 199–212.

    Article  CAS  PubMed  Google Scholar 

  35. Cattoretti G, Pasqualucci L, Ballon G, Tam W, Nandula SV, Shen Q et al. Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice. Cancer Cell 2005; 7: 445–455.

    Article  CAS  PubMed  Google Scholar 

  36. Cerchietti LC, Yang SN, Shaknovich R, Hatzi K, Polo JM, Chadburn A et al. A peptomimetic inhibitor of BCL6 with potent antilymphoma effects in vitro and in vivo. Blood 2009; 113: 3397–3405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cerchietti LC, Ghetu AF, Zhu X, Da Silva GF, Zhong S, Matthews M et al. A small-molecule inhibitor of BCL6 kills DLBCL cells in vitro and in vivo. Cancer Cell 2010; 17: 400–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hurtz C, Hatzi K, Cerchietti L, Braig M, Park E, Kim YM et al. BCL6-mediated repression of p53 is critical for leukemia stem cell survival in chronic myeloid leukemia. J Exp Med 2011; 208: 2163–2174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsai HC, Li H, Van Neste L, Cai Y, Robert C, Rassool FV et al. Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell 2012; 21: 430–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Logarajah S, Hunter P, Kraman M, Steele D, Lakhani S, Bobrow L et al. BCL-6 is expressed in breast cancer and prevents mammary epithelial differentiation. Oncogene 2003; 22: 5572–5578.

    Article  CAS  PubMed  Google Scholar 

  41. Joshi PA, Jackson HW, Beristain AG, Di Grappa MA, Mote PA, Clarke CL et al. Progesterone induces adult mammary stem cell expansion. Nature 2010; 465: 803–807.

    Article  CAS  PubMed  Google Scholar 

  42. Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER et al. Control of mammary stem cell function by steroid hormone signalling. Nature 2010; 465: 798–802.

    Article  CAS  PubMed  Google Scholar 

  43. Pierson-Mullany LK, Lange CA . Phosphorylation of progesterone receptor serine 400 mediates ligand-independent transcriptional activity in response to activation of cyclin-dependent protein kinase 2. Mol Cell Biol 2004; 24: 10542–10557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jacobsen BM, Schittone SA, Richer JK, Horwitz KB . Progesterone-independent effects of human progesterone receptors (PRs) in estrogen receptor-positive breast cancer: PR isoform-specific gene regulation and tumor biology. Mol Endocrinol 2005; 19: 574–587.

    Article  CAS  PubMed  Google Scholar 

  45. Daniel AR, Lange CA . Protein kinases mediate ligand-independent derepression of sumoylated progesterone receptors in breast cancer cells. Proc Natl Acad Sci USA 2009; 106: 14287–14292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dagvadorj A, Kirken RA, Leiby B, Karras J, Nevalainen MT . Transcription factor signal transducer and activator of transcription 5 promotes growth of human prostate cancer cells in vivo. Clin Cancer Res 2008; 14: 1317–1324.

    Article  CAS  PubMed  Google Scholar 

  47. Johnson KJ, Peck AR, Liu C, Tran TH, Utama FE, Sjolund AB et al. PTP1B suppresses prolactin activation of Stat5 in breast cancer cells. Am J Pathol 2010; 177: 2971–2983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Komen for the Cure Promise Grant KG091116 (HR, TH, JAH, AJK, CDS, TS, ARP, MAG, CL, BF, and IC), NIH grants CA101841 (HR), CA118740 (HR), CA092900 (SYF) and NCI Support Grant 1P30CA56036 to the Kimmel Cancer Center. The Project is funded, in part, under a Commonwealth University Research Enhancement Program grant with the Pennsylvania Department of Health (HR). The Department specifically disclaims responsibility for any analyses, interpretations or conclusions. The views expressed in this article are those of the authors and do not reflect the official policy of the Department of the Army, Department of Defense or US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Rui.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, T., Tran, T., Peck, A. et al. Prolactin suppresses a progestin-induced CK5-positive cell population in luminal breast cancer through inhibition of progestin-driven BCL6 expression. Oncogene 33, 2215–2224 (2014). https://doi.org/10.1038/onc.2013.172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.172

Keywords

This article is cited by

Search

Quick links