Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Protein lysine acetylation guards metabolic homeostasis to fight against cancer

Abstract

Properly coordinated metabolism and maintained metabolite homeostasis are important because altered metabolite homeostasis has a causal role in many human diseases, including cancer. Metabolite homeostasis is maintained by fine-tuned coordination of metabolite generation and utilization. Metabolite deregulation has recently been shown to alter the signaling pathways and reprogram epigenetic factors associated with tumorigenesis. Protein lysine acetylation is emerging as a metabolism-coordinating mechanism. Mechanistic studies have shown that acetylation may have roles in nutrient adaptation and in maintaining metabolite homeostasis by exerting regulatory effects on metabolic enzymes, metabolic pathways and metabolic networks. Here we review recent progress in the determination of the role of acetylation regulation in metabolism coordination. In particular, we review links between deregulated acetylation in metabolic enzymes and tumorigenesis. We further hypothesize on applications of the mediation of acetylation to restore deregulated metabolism coordination and thus develop novel means of cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Warburg O, Negelein E . Ueber den stoffwechsel der tumoren. Biochemische Zeitschrift 1924; 152: 319–344.

    Google Scholar 

  2. Warburg O . On the origin of cancer cells. Science 1956; 123: 309–314.

    CAS  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  4. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009; 458: 762–765.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zielke HR, Zielke CL, Ozand PT . Glutamine: a major energy source for cultured mammalian cells. Fed Proc 1984; 43: 121–125.

    CAS  PubMed  Google Scholar 

  6. McKeehan WL . Glycolysis, glutaminolysis and cell proliferation. Cell Biol Int Rep 1982; 6: 635–650.

    CAS  PubMed  Google Scholar 

  7. Sen N, Satija YK, Das S . p53 and metabolism: old player in a new game. Transcription 2012; 3: 119–123.

    PubMed  PubMed Central  Google Scholar 

  8. Won KY, Lim SJ, Kim GY, Kim YW, Han SA, Song JY et al. Regulatory role of p53 in cancer metabolism via SCO2 and TIGAR in human breast cancer. Hum Pathol 2012; 43: 221–228.

    CAS  PubMed  Google Scholar 

  9. Melino G . Journal club. A cancer biologist weighs up p53, metabolism and cancer. Nature 2010; 466: 905.

    CAS  PubMed  Google Scholar 

  10. Esteban MA, Maxwell PH . HIF, a missing link between metabolism and cancer. Nat Med 2005; 11: 1047–1048.

    CAS  PubMed  Google Scholar 

  11. Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 2009; 324: 261–265.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 2011; 19: 17–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB . The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008; 7: 11–20.

    CAS  PubMed  Google Scholar 

  14. Allfrey VG, Faulkner R, Mirsky AE . Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 1964; 51: 786–794.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pogo BG, Allfrey VG, Mirsky AE . RNA synthesis and histone acetylation during the course of gene activation in lymphocytes. Proc Natl Acad Sci USA 1966; 55: 805–812.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Struhl K . Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 1998; 12: 599–606.

    CAS  PubMed  Google Scholar 

  17. Gu W, Roeder RG . Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 1997; 90: 595–606.

    CAS  PubMed  Google Scholar 

  18. Tang Y, Luo J, Zhang W, Gu W . Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 2006; 24: 827–839.

    CAS  PubMed  Google Scholar 

  19. Timmermann S, Lehrmann H, Polesskaya A, Harel-Bellan A . Histone acetylation and disease. Cell Mol Life Sci 2001; 58: 728–736.

    CAS  PubMed  Google Scholar 

  20. Muraoka M, Konishi M, Kikuchi-Yanoshita R, Tanaka K, Shitara N, Chong JM et al. p300 gene alterations in colorectal and gastric carcinomas. Oncogene 1996; 12: 1565–1569.

    CAS  PubMed  Google Scholar 

  21. Mullighan CG, Zhang J, Kasper LH, Lerach S, Payne-Turner D, Phillips LA et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 2011; 471: 235–239.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Giles RH, Peters DJ, Breuning MH . Conjunction dysfunction: CBP/p300 in human disease. Trends Genet 1998; 14: 178–183.

    CAS  PubMed  Google Scholar 

  23. Brooks CL, Gu W . The impact of acetylation and deacetylation on the p53 pathway. Protein Cell 2011; 2: 456–462.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tang Y, Zhao W, Chen Y, Zhao Y, Gu W . Acetylation is indispensable for p53 activation. Cell 2008; 133: 612–626.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Luo J, Li M, Tang Y, Laszkowska M, Roeder RG, Gu W . Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc Natl Acad Sci USA 2004; 101: 2259–2264.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gu W, Luo J, Brooks CL, Nikolaev AY, Li M . Dynamics of the p53 acetylation pathway. Novartis Found Symp 2004; 259: 197–205 discussion-7, 23–25.

    CAS  PubMed  Google Scholar 

  27. Yang MH, Nickerson S, Kim ET, Liot C, Laurent G, Spang R et al. Regulation of RAS oncogenicity by acetylation. Proc Natl Acad Sci USA 2012; 109: 10843–10848.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 2000; 406: 207–210.

    CAS  PubMed  Google Scholar 

  29. Desvergne B, Michalik L, Wahli W . Transcriptional regulation of metabolism. Physiol Rev 2006; 86: 465–514.

    CAS  PubMed  Google Scholar 

  30. Johnson LN . Glycogen phosphorylase: control by phosphorylation and allosteric effectors. FASEB J 1992; 6: 2274–2282.

    CAS  PubMed  Google Scholar 

  31. Fang X, Yu SX, Lu Y, Bast RC Jr, Woodgett JR, Mills GB . Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci USA 2000; 97: 11960–11965.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Linn TC, Pettit FH, Reed LJ . Alpha-keto acid dehydrogenase complexes. X. Regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc Natl Acad Sci USA 1969; 62: 234–241.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 2006; 23: 607–618.

    CAS  PubMed  Google Scholar 

  34. Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-Semerena JC . Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 2002; 298: 2390–2392.

    CAS  PubMed  Google Scholar 

  35. Hallows WC, Lee S, Denu JM . Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci USA 2006; 103: 10230–10235.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T et al. Regulation of cellular metabolism by protein lysine acetylation. Science 2010; 327: 1000–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009; 325: 834–840.

    Article  CAS  PubMed  Google Scholar 

  38. Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 2010; 327: 1004–1007.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H et al. Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics 2009; 8: 215–225.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu W, Lin Y, Yao J, Huang W, Lei Q, Xiong Y et al. Lysine 88 acetylation negatively regulates ornithine carbamoyltransferase activity in response to nutrient signals. J Biol Chem 2009; 284: 13669–13675.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang T, Wang S, Lin Y, Xu W, Ye D, Xiong Y et al. Acetylation negatively regulates glycogen phosphorylase by recruiting protein phosphatase 1. Cell Metab 2012; 15: 75–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jiang W, Wang S, Xiao M, Lin Y, Zhou L, Lei Q et al. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell 2011; 43: 33–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Someya S, Yu W, Hallows WC, Xu J, Vann JM, Leeuwenburgh C et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 2010; 143: 802–812.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hebert AS, Dittenhafer-Reed KE, Yu W, Bailey DJ, Selen ES, Boersma MD et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell 2013; 49: 186–199.

    CAS  PubMed  Google Scholar 

  45. Schwer B, Eckersdorff M, Li Y, Silva JC, Fermin D, Kurtev MV et al. Calorie restriction alters mitochondrial protein acetylation. Aging Cell 2009; 8: 604–606.

    CAS  PubMed  Google Scholar 

  46. Hirschey MD, Shimazu T, Huang JY, Verdin E . Acetylation of mitochondrial proteins. Methods Enzymol 2009; 457: 137–147.

    CAS  PubMed  Google Scholar 

  47. Anderson KA, Hirschey MD . Mitochondrial protein acetylation regulates metabolism. Essays Biochem 2012; 52: 23–35.

    CAS  PubMed  Google Scholar 

  48. Guarente L . The logic linking protein acetylation and metabolism. Cell Metab 2011; 14: 151–153.

    CAS  PubMed  Google Scholar 

  49. Sterner DE, Berger SL . Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 2000; 64: 435–459.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tanner KG, Trievel RC, Kuo MH, Howard RM, Berger SL, Allis CD et al. Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator. J Biol Chem 1999; 274: 18157–18160.

    CAS  PubMed  Google Scholar 

  51. Hodawadekar SC, Marmorstein R . Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design. Oncogene 2007; 26: 5528–5540.

    CAS  PubMed  Google Scholar 

  52. Liwer Stein JM, Citric Acid Cycle Methods in Enzymology, vol. 13. Academic Press, Boston, MA, USA, 1969.

    Google Scholar 

  53. Aksoy P, White TA, Thompson M, Chini EN . Regulation of intracellular levels of NAD: a novel role for CD38. Biochem Biophys Res Commun 2006; 345: 1386–1392.

    CAS  PubMed  Google Scholar 

  54. Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 2007; 130: 1095–1107.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Brownell JE, Allis CD . Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr Opin Genet Dev 1996; 6: 176–184.

    CAS  PubMed  Google Scholar 

  56. Mizzen CA, Allis CD . Linking histone acetylation to transcriptional regulation. Cell Mol Life Sci 1998; 54: 6–20.

    CAS  PubMed  Google Scholar 

  57. Gorke B, Stulke J . Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 2008; 6: 613–624.

    PubMed  Google Scholar 

  58. Portnoy T, Margeot A, Linke R, Atanasova L, Fekete E, Sandor E et al. The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation. BMC Genomics 2011; 12: 269.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim J, Yeom J, Jeon CO, Park W . Intracellular 2-keto-3-deoxy-6-phosphogluconate is the signal for carbon catabolite repression of phenylacetic acid metabolism in Pseudomonas putida KT2440. Microbiology 2009; 155 (Pt 7): 2420–2428.

    CAS  PubMed  Google Scholar 

  60. Andreyev AY, Kushnareva YE, Starkov AA . Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 2005; 70: 200–214.

    CAS  Google Scholar 

  61. Gray MW, Burger G, Lang BF . The origin and early evolution of mitochondria. Genome Biol 2001; 2: reviews 1018.1–1018.5.

    Google Scholar 

  62. Luethy MH, Miernyk JA, Randall DD . The mitochondrial pyruvate dehydrogenase complex: nucleotide and deduced amino-acid sequences of a cDNA encoding the Arabidopsis thaliana E1 alpha-subunit. Gene 1995; 164: 251–254.

    CAS  PubMed  Google Scholar 

  63. Hallows WC, Yu W, Smith BC, Devries MK, Ellinger JJ, Someya S et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol Cell 2011; 41: 139–149.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Nakagawa T, Lomb DJ, Haigis MC, Guarente L . SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 2009; 137: 560–570.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010; 464: 121–125.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol 2007; 27: 8807–8814.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lv L, Li D, Zhao D, Lin R, Chu Y, Zhang H et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell 2011; 42: 719–730.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008; 452: 230–233.

    CAS  PubMed  Google Scholar 

  69. Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC . Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 2008; 452: 181–186.

    CAS  PubMed  Google Scholar 

  70. Lu JY, Lin YY, Sheu JC, Wu JT, Lee FJ, Chen Y et al. Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction. Cell 2011; 146: 969–979.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu J, Feng Z . PTEN, energy metabolism and tumor suppression. Acta Biochim Biophys Sin (Shanghai) 2012; 44: 629–631.

    CAS  Google Scholar 

  72. Hebert AS, Dittenhafer-Reed KE, Yu W, Bailey DJ, Selen ES, Boersma MD et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell 2012; 49: 186–199.

    PubMed  PubMed Central  Google Scholar 

  73. Lombard DB, Tishkoff DX, Bao J . Mitochondrial sirtuins in the regulation of mitochondrial activity and metabolic adaptation. Handb Exp Pharmacol 2011; 206: 163–188.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Tomlinson IP, Alam NA, Rowan AJ, Barclay E, Jaeger EE, Kelsell D et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 2002; 30: 406–410.

    CAS  PubMed  Google Scholar 

  75. Launonen V, Vierimaa O, Kiuru M, Isola J, Roth S, Pukkala E et al. Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc Natl Acad Sci USA 2001; 98: 3387–3392.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Alam NA, Rowan AJ, Wortham NC, Pollard PJ, Mitchell M, Tyrer JP et al. Genetic and functional analyses of FH mutations in multiple cutaneous and uterine leiomyomatosis, hereditary leiomyomatosis and renal cancer, and fumarate hydratase deficiency. Hum Mol Genet 2003; 12: 1241–1252.

    CAS  PubMed  Google Scholar 

  77. Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 2000; 287: 848–851.

    CAS  PubMed  Google Scholar 

  78. Niemann S, Muller U . Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet 2000; 26: 268–270.

    CAS  PubMed  Google Scholar 

  79. Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 2001; 69: 49–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Xekouki P, Pacak K, Almeida M, Wassif CA, Rustin P, Nesterova M et al. Succinate dehydrogenase (SDH) D subunit (SDHD) inactivation in a growth-hormone-producing pituitary tumor: a new association for SDH? J Clin Endocrinol Metab 2011; 97: E357–E366.

    PubMed  PubMed Central  Google Scholar 

  81. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 2005; 7: 77–85.

    CAS  PubMed  Google Scholar 

  82. Isaacs JS, Jung YJ, Mole DR, Lee S, Torres-Cabala C, Chung YL et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 2005; 8: 143–153.

    CAS  PubMed  Google Scholar 

  83. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321: 1807–1812.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009; 360: 765–773.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 2010; 17: 225–234.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhao S, Guan KL . IDH1 mutant structures reveal a mechanism of dominant inhibition. Cell Res 2010; 20: 1279–1281.

    PubMed  Google Scholar 

  87. Koivunen P, Lee S, Duncan CG, Lopez G, Lu G, Ramkissoon S et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 2012; 483: 484–488.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G et al. Glycolytic enzymes can modulate cellular life span. Cancer Res 2005; 65: 177–185.

    CAS  PubMed  Google Scholar 

  89. Niinaka Y, Paku S, Haga A, Watanabe H, Raz A . Expression and secretion of neuroleukin/phosphohexose isomerase/maturation factor as autocrine motility factor by tumor cells. Cancer Res 1998; 58: 2667–2674.

    CAS  PubMed  Google Scholar 

  90. Capello M, Ferri-Borgogno S, Cappello P, Novelli F . Alpha-enolase: a promising therapeutic and diagnostic tumor target. FEBS J 2011; 278: 1064–1074.

    CAS  PubMed  Google Scholar 

  91. Kuhajda FP . Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition 2000; 16: 202–208.

    CAS  PubMed  Google Scholar 

  92. Drapier JC, Hibbs JB Jr . Murine cytotoxic activated macrophages inhibit aconitase in tumor cells. Inhibition involves the iron-sulfur prosthetic group and is reversible. J Clin Invest 1986; 78: 790–797.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 2011; 146: 1016–1028.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Tan J, Cang S, Ma Y, Petrillo RL, Liu D . Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. J Hematol Oncol 2010; 3: 5.

    PubMed  PubMed Central  Google Scholar 

  95. Balakin KV, Ivanenkov YA, Kiselyov AS, Tkachenko SE . Histone deacetylase inhibitors in cancer therapy: latest developments, trends and medicinal chemistry perspective. Anticancer Agents Med Chem 2007; 7: 576–592.

    CAS  PubMed  Google Scholar 

  96. Lara E, Mai A, Calvanese V, Altucci L, Lopez-Nieva P, Martinez-Chantar ML et al. Salermide, a sirtuin inhibitor with a strong cancer-specific proapoptotic effect. Oncogene 2009; 28: 781–791.

    CAS  PubMed  Google Scholar 

  97. Ota H, Tokunaga E, Chang K, Hikasa M, Iijima K, Eto M et al. Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene 2006; 25: 176–185.

    CAS  PubMed  Google Scholar 

  98. Heltweg B, Gatbonton T, Schuler AD, Posakony J, Li H, Goehle S et al. Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res 2006; 66: 4368–4377.

    CAS  PubMed  Google Scholar 

  99. Lain S, Hollick JJ, Campbell J, Staples OD, Higgins M, Aoubala M et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 2008; 13: 454–463.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Lundby A, Lage K, Weinert BT, Bekker-Jensen DB, Secher A, Skovgaard T et al. Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. Cell Rep 2012; 2: 419–431.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kuo MH, Allis CD . Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 1998; 20: 615–626.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the National 973 Programs of China (Nos. 2012CB910300, 2012CB721102, 2013CB911204 and 2013CB945400), NSFC Foundation of China (31030042) and the Shanghai Basic Research Fund (11JC1401100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Zhao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, W., Li, Y., Liu, C. et al. Protein lysine acetylation guards metabolic homeostasis to fight against cancer. Oncogene 33, 2279–2285 (2014). https://doi.org/10.1038/onc.2013.163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.163

Keywords

This article is cited by

Search

Quick links