Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Drosophila actin-Capping Protein limits JNK activation by the Src proto-oncogene

Abstract

The Src family kinases c-Src, and its downstream effectors, the Rho family of small GTPases RhoA and Jun N-terminal kinase (JNK) have a significant role in tumorigenesis. In this report, using the Drosophila wing disc epithelium as a model system, we demonstrate that the actin-Capping Protein (CP) αβ heterodimer, which regulates actin filament (F-actin) polymerization, limits Src-induced apoptosis or tissue overgrowth by restricting JNK activation. We show that overexpressing Src64B drives JNK-independent loss of epithelial integrity and JNK-dependent apoptosis via Btk29A, p120ctn and Rho1. However, when cells are kept alive with the Caspase inhibitor P35, JNK acts as a potent inducer of proliferation via activation of the Yorkie oncogene. Reducing CP levels direct apoptosis of overgrowing Src64B-overexpressing tissues. Conversely, overexpressing capping protein inhibits Src64B and Rho1, but not Rac1-induced JNK signaling. CP requires the actin-binding domain of the α-subunit to limit Src64B-induced apoptosis, arguing that the control of F-actin mediates this effect. In turn, JNK directs F-actin accumulation. Moreover, overexpressing capping protein also prevents apoptosis induced by ectopic JNK expression. Our data are consistent with a model in which the control of F-actin by CP limits Src-induced apoptosis or tissue overgrowth by acting downstream of Btk29A, p120ctn and Rho1, but upstream of JNK. In turn, JNK may counteract the effect of CP on F-actin, providing a positive feedback, which amplifies JNK activation. We propose that cytoskeletal changes triggered by misregulation of F-actin modulators may have a significant role in Src-mediated malignant phenotypes during the early stages of cellular transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Nowell PC . The clonal evolution of tumor cell populations. Science 1976; 194: 23–28.

    Article  CAS  PubMed  Google Scholar 

  2. Fearon ER, Vogelstein B . A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759–767.

    Article  CAS  PubMed  Google Scholar 

  3. Hariharan IK, Bilder D . Regulation of imaginal disc growth by tumor-suppressor genes in Drosophila. Annu Rev Genet 2006; 40: 335–361.

    CAS  PubMed  Google Scholar 

  4. Brumby AM, Richardson HE . Using Drosophila melanogaster to map human cancer pathways. Nat Rev Cancer 2005; 5: 626–639.

    CAS  PubMed  Google Scholar 

  5. Khoo P, Allan K, Willoughby L, Brumby AM, Richardson HE . RhoGEF2 cooperates with activated Ras in tumourigenesis through a pathway involving Rho1-Rok-Myosin II and JNK Signalling. Dis Model Mech (e-pub ahead of print 21 February 2013).

  6. Brumby AM, Goulding KR, Schlosser T, Loi S, Galea R, Khoo P et al. Identification of novel Ras-cooperating oncogenes in Drosophila melanogaster: a RhoGEF/Rho-family/JNK pathway is a central driver of tumorigenesis. Genetics 2011; 188: 105–125.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pagliarini RA, Xu T . A genetic screen in Drosophila for metastatic behavior. Science 2003; 302: 1227–1231.

    CAS  PubMed  Google Scholar 

  8. Brumby AM, Richardson HE . Scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. Embo J 2003; 22: 5769–5779.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Vidal M, Warner S, Read R, Cagan RL . Differing Src signaling levels have distinct outcomes in Drosophila. Cancer Res 2007; 67: 10278–10285.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Leong GR, Goulding KR, Amin N, Richardson HE, Brumby AM . Scribble mutants promote aPKC and JNK-dependent epithelial neoplasia independently of Crumbs. BMC Biol 2009; 7: 62.

    PubMed  PubMed Central  Google Scholar 

  11. Uhlirova M, Bohmann D . JNK- and Fos-regulated Mmp1 expression cooperates with Ras to induce invasive tumors in Drosophila. EMBO J 2006; 25: 5294–5304.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Igaki T, Pagliarini RA, Xu T . Loss of cell polarity drives tumor growth and invasion through JNK activation in Drosophila. Curr Biol 2006; 16: 1139–1146.

    CAS  PubMed  Google Scholar 

  13. Doggett K, Grusche FA, Richardson HE, Brumby AM . Loss of the Drosophila cell polarity regulator Scribbled promotes epithelial tissue overgrowth and cooperation with oncogenic Ras-Raf through impaired Hippo pathway signaling. BMC Dev Biol 11: 57.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wagner EF, Nebreda AR . Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 2009; 9: 537–549.

    CAS  PubMed  Google Scholar 

  15. Vidal M, Larson DE, Cagan RL . Csk-deficient boundary cells are eliminated from normal Drosophila epithelia by exclusion, migration, and apoptosis. Dev Cell 2006; 10: 33–44.

    CAS  PubMed  Google Scholar 

  16. Read RD, Bach EA, Cagan RL . Drosophila C-terminal Src kinase negatively regulates organ growth and cell proliferation through inhibition of the Src, Jun N-terminal kinase, and STAT pathways. Mol Cell Biol 2004; 24: 6676–6689.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yeatman TJ . A renaissance for SRC. Nat Rev Cancer 2004; 4: 470–480.

    CAS  PubMed  Google Scholar 

  18. Nagao M, Kaziro Y, Itoh H . The Src family tyrosine kinase is involved in Rho-dependent activation of c-Jun N-terminal kinase by Galpha12. Oncogene 1999; 18: 4425–4434.

    CAS  PubMed  Google Scholar 

  19. Brunton VG, MacPherson IR, Frame MC . Cell adhesion receptors, tyrosine kinases and actin modulators: a complex three-way circuitry. Biochim Biophys Acta 2004; 1692: 121–144.

    CAS  PubMed  Google Scholar 

  20. Takahashi F, Endo S, Kojima T, Saigo K . Regulation of cell-cell contacts in developing Drosophila eyes by Dsrc41, a new, close relative of vertebrate c-src. Genes Dev 1996; 10: 1645–1656.

    CAS  PubMed  Google Scholar 

  21. Dodson GS, Guarnieri DJ, Simon MA . Src64 is required for ovarian ring canal morphogenesis during Drosophila oogenesis. Development 1998; 125: 2883–2892.

    CAS  PubMed  Google Scholar 

  22. Simon MA, Drees B, Kornberg T, Bishop JM . The nucleotide sequence and the tissue-specific expression of Drosophila c-src. Cell 1985; 42: 831–840.

    CAS  PubMed  Google Scholar 

  23. Tateno M, Nishida Y, Adachi-Yamada T . Regulation of JNK by Src during Drosophila development. Science 2000; 287: 324–327.

    CAS  PubMed  Google Scholar 

  24. Stewart RA, Li DM, Huang H, Xu T . A genetic screen for modifiers of the lats tumor suppressor gene identifies C-terminal Src kinase as a regulator of cell proliferation in Drosophila. Oncogene 2003; 22: 6436–6444.

    CAS  PubMed  Google Scholar 

  25. Pedraza LG, Stewart RA, Li DM, Xu T . Drosophila Src-family kinases function with Csk to regulate cell proliferation and apoptosis. Oncogene 2004; 23: 4754–4762.

    CAS  PubMed  Google Scholar 

  26. Thomas JH, Wieschaus E . src64 and tec29 are required for microfilament contraction during Drosophila cellularization. Development 2004; 131: 863–871.

    CAS  PubMed  Google Scholar 

  27. Lu N, Guarnieri DJ, Simon MA . Localization of Tec29 to ring canals is mediated by Src64 and PtdIns(3,4,5)P3-dependent mechanisms. EMBO J 2004; 23: 1089–1100.

    PubMed  PubMed Central  Google Scholar 

  28. Shindo M, Wada H, Kaido M, Tateno M, Aigaki T, Tsuda L et al. Dual function of Src in the maintenance of adherens junctions during tracheal epithelial morphogenesis. Development 2008; 135: 1355–1364.

    CAS  PubMed  Google Scholar 

  29. Enomoto M, Igaki T . Src controls tumorigenesis via JNK-dependent regulation of the Hippo pathway in Drosophila. EMBO Rep 2012; 14: 65–72.

    PubMed  PubMed Central  Google Scholar 

  30. Cooper JA, Sept D . New insights into mechanism and regulation of actin capping protein. Int Rev Cell Mol Biol 2008; 267: 183–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Spiering D, Hodgson L . Dynamics of the Rho-family small GTPases in actin regulation and motility. Cell Adh Migr 2011; 5: 170–180.

    PubMed  PubMed Central  Google Scholar 

  32. Somogyi K, Rorth P . Cortactin modulates cell migration and ring canal morphogenesis during Drosophila oogenesis. Mech Dev 2004; 121: 57–64.

    CAS  PubMed  Google Scholar 

  33. Bresnick AR . Molecular mechanisms of nonmuscle myosin-II regulation. Curr Opin Cell Biol 1999; 11: 26–33.

    CAS  PubMed  Google Scholar 

  34. Jezowska B, Fernandez BG, Amandio AR, Duarte P, Mendes C, Bras-Pereira C et al. A dual function of Drosophila capping protein on DE-cadherin maintains epithelial integrity and prevents JNK-mediated apoptosis. Dev Biol 2011; 360: 143–159.

    CAS  PubMed  Google Scholar 

  35. Fernandez BG, Gaspar P, Bras-Pereira C, Jezowska B, Rebelo SR, Janody F . Actin-Capping Protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila. Development 2011; 138: 2337–2346.

    CAS  PubMed  Google Scholar 

  36. Sansores-Garcia L, Bossuyt W, Wada KI, Yonemura S, Tao C, Sasaki H et al. Modulating F-actin organization induces organ growth by affecting the Hippo pathway. EMBO J 2011; 30: 2325–2335.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang J, Wu S, Barrera J, Matthews K, Pan D . The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 2005; 122: 421–434.

    CAS  PubMed  Google Scholar 

  38. Oh H, Irvine KD . In vivo regulation of Yorkie phosphorylation and localization. Development 2008; 135: 1081–1088.

    CAS  PubMed  Google Scholar 

  39. Wear MA, Cooper JA . Capping protein binding to S100B: implications for the tentacle model for capping the actin filament barbed end. J Biol Chem 2004; 279: 14382–14390.

    CAS  PubMed  Google Scholar 

  40. Kim K, Yamashita A, Wear MA, Maeda Y, Cooper JA . Capping protein binding to actin in yeast: biochemical mechanism and physiological relevance. J Cell Biol 2004; 164: 567–580.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wear MA, Yamashita A, Kim K, Maeda Y, Cooper JA . How capping protein binds the barbed end of the actin filament. Curr Biol 2003; 13: 1531–1537.

    CAS  PubMed  Google Scholar 

  42. Janody F, Treisman JE . Actin capping protein {alpha} maintains vestigial-expressing cells within the Drosophila wing disc epithelium. Development 2006; 133: 3349–3357.

    CAS  PubMed  Google Scholar 

  43. Gates J, Nowotarski SH, Yin H, Mahaffey JP, Bridges T, Herrera C et al. Enabled and Capping protein play important roles in shaping cell behavior during Drosophila oogenesis. Dev Biol 2009; 333: 90–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Delalle I, Pfleger CM, Buff E, Lueras P, Hariharan IK . Mutations in the Drosophila orthologs of the F-actin capping protein alpha- and beta-subunits cause actin accumulation and subsequent retinal degeneration. Genetics 2005; 171: 1757–1765.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Fan Y, Bergmann A . The cleaved-Caspase-3 antibody is a marker of Caspase-9-like DRONC activity in Drosophila. Cell Death Differ 2010; 17: 534–539.

    CAS  PubMed  Google Scholar 

  46. Duffy JB . GAL4 system in Drosophila: a fly geneticist's Swiss army knife. Genesis 2002; 34: 1–15.

    CAS  PubMed  Google Scholar 

  47. Amatruda JF, Gattermeir DJ, Karpova TS, Cooper JA . Effects of null mutations and overexpression of capping protein on morphogenesis, actin distribution and polarized secretion in yeast. J Cell Biol 1992; 119: 1151–1162.

    CAS  PubMed  Google Scholar 

  48. Schafer DA, Mooseker MS, Cooper JA . Localization of capping protein in chicken epithelial cells by immunofluorescence and biochemical fractionation. J Cell Biol 1992; 118: 335–346.

    CAS  PubMed  Google Scholar 

  49. Wear MA, Cooper JA . Capping protein: new insights into mechanism and regulation. Trends Biochem Sci 2004; 29: 418–428.

    CAS  PubMed  Google Scholar 

  50. Kim JY, Lee YG, Kim MY, Byeon SE, Rhee MH, Park J et al. Src-mediated regulation of inflammatory responses by actin polymerization. Biochem Pharmacol 2009; 79: 431–443.

    PubMed  Google Scholar 

  51. Desprat N, Supatto W, Pouille PA, Beaurepaire E, Farge E . Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos. Dev Cell 2008; 15: 470–477.

    CAS  PubMed  Google Scholar 

  52. Giannone G, Sheetz MP . Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol 2006; 16: 213–223.

    CAS  PubMed  Google Scholar 

  53. Forster D, Luschnig S . Src42A-dependent polarized cell shape changes mediate epithelial tube elongation in Drosophila. Nat Cell Biol 2012; 14: 526–534.

    PubMed  Google Scholar 

  54. Nelson KS, Khan Z, Molnar I, Mihaly J, Kaschube M, Beitel GJ . Drosophila Src regulates anisotropic apical surface growth to control epithelial tube size. Nat Cell Biol 2012; 14: 518–525.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Oktay M, Wary KK, Dans M, Birge RB, Giancotti FG . Integrin-mediated activation of focal adhesion kinase is required for signaling to Jun NH2-terminal kinase and progression through the G1 phase of the cell cycle. J Cell Biol 1999; 145: 1461–1469.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Saito K, Scharenberg AM, Kinet JP . Interaction between the Btk PH domain and phosphatidylinositol-3,4,5-trisphosphate directly regulates Btk. J Biol Chem 2001; 276: 16201–16206.

    CAS  PubMed  Google Scholar 

  57. Reynolds AB, Roesel DJ, Kanner SB, Parsons JT . Transformation-specific tyrosine phosphorylation of a novel cellular protein in chicken cells expressing oncogenic variants of the avian cellular src gene. Mol Cell Biol 1989; 9: 629–638.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tsai YT, Su YH, Fang SS, Huang TN, Qiu Y, Jou YS et al. Etk, a Btk family tyrosine kinase, mediates cellular transformation by linking Src to STAT3 activation. Mol Cell Biol 2000; 20: 2043–2054.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Rawlings DJ, Scharenberg AM, Park H, Wahl MI, Lin S, Kato RM et al. Activation of BTK by a phosphorylation mechanism initiated by SRC family kinases. Science 1996; 271: 822–825.

    CAS  PubMed  Google Scholar 

  60. Castano J, Solanas G, Casagolda D, Raurell I, Villagrasa P, Bustelo XR et al. Specific phosphorylation of p120-catenin regulatory domain differently modulates its binding to RhoA. Mol Cell Biol 2007; 27: 1745–1757.

    CAS  PubMed  Google Scholar 

  61. Cozzolino M, Stagni V, Spinardi L, Campioni N, Fiorentini C, Salvati E et al. p120 Catenin is required for growth factor-dependent cell motility and scattering in epithelial cells. Mol Biol Cell 2003; 14: 1964–1977.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Chang YW, Bean RR, Jakobi R . Targeting RhoA/Rho kinase and p21-activated kinase signaling to prevent cancer development and progression. Recent Pat Anticancer Drug Discov 2009; 4: 110–124.

    CAS  PubMed  Google Scholar 

  63. Neisch AL, Speck O, Stronach B, Fehon RG . Rho1 regulates apoptosis via activation of the JNK signaling pathway at the plasma membrane. J Cell Biol 2010; 189: 311–323.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Warner SJ, Yashiro H, Longmore GD . The Cdc42/Par6/aPKC polarity complex regulates apoptosis-induced compensatory proliferation in epithelia. Curr Biol 2010; 20: 677–686.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Magie CR, Pinto-Santini D, Parkhurst SM . Rho1 interacts with p120ctn and alpha-catenin, and regulates cadherin-based adherens junction components in Drosophila. Development 2002; 129: 3771–3782.

    CAS  PubMed  Google Scholar 

  66. Fanning PJ, Emkey G, Smith RJ, Grodzinsky AJ, Szasz N, Trippel SB . Mechanical regulation of mitogen-activated protein kinase signaling in articular cartilage. J Biol Chem 2003; 278: 50940–50948.

    CAS  PubMed  Google Scholar 

  67. Huang C, Rajfur Z, Borchers C, Schaller MD, Jacobson K . JNK phosphorylates paxillin and regulates cell migration. Nature 2003; 424: 219–223.

    CAS  PubMed  Google Scholar 

  68. Chan HL, Chou HC, Duran M, Gruenewald J, Waterfield MD, Ridley A et al. Major role of epidermal growth factor receptor and Src kinases in promoting oxidative stress-dependent loss of adhesion and apoptosis in epithelial cells. J Biol Chem 2010; 285: 4307–4318.

    CAS  PubMed  Google Scholar 

  69. Kulshammer E, Uhlirova M . The actin cross-linker Filamin/Cheerio mediates tumor malignancy downstream of JNK signaling. J Cell Sci 2012; 126: 927–938.

    PubMed  Google Scholar 

  70. Smadja-Lamere N, Boulanger MC, Champagne C, Branton PE, Lavoie JN . JNK-mediated phosphorylation of paxillin in adhesion assembly and tension-induced cell death by the adenovirus death factor E4orf4. J Biol Chem 2008; 283: 34352–34364.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Rudrapatna VA, Cagan RL, Das TK . Drosophila cancer models. Dev Dyn 241: 107–118.

  72. Chen F . JNK-induced apoptosis, compensatory growth, and cancer stem cells. Cancer Res 2012; 72: 379–386.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ridley AJ . Rho proteins and cancer. Breast Cancer Res Treat 2004; 84: 13–19.

    CAS  PubMed  Google Scholar 

  74. Gomez del Pulgar T, Benitah SA, Valeron PF, Espina C, Lacal JC . Rho GTPase expression in tumourigenesis: evidence for a significant link. Bioessays 2005; 27: 602–613.

    PubMed  Google Scholar 

  75. Shah V, Braverman R, Prasad GL . Suppression of neoplastic transformation and regulation of cytoskeleton by tropomyosins. Somat Cell Mol Genet 1998; 24: 273–280.

    CAS  PubMed  Google Scholar 

  76. Mahadev K, Raval G, Bharadwaj S, Willingham MC, Lange EM, Vonderhaar B et al. Suppression of the transformed phenotype of breast cancer by tropomyosin-1. Exp Cell Res 2002; 279: 40–51.

    CAS  PubMed  Google Scholar 

  77. Mammoto A, Ingber DE . Cytoskeletal control of growth and cell fate switching. Curr Opin Cell Biol 2009; 21: 864–870.

    CAS  PubMed  Google Scholar 

  78. Yamamoto N, Okano T, Ma X, Adelstein RS, Kelley MW . Myosin II regulates extension, growth and patterning in the mammalian cochlear duct. Development 2009; 136: 1977–1986.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bischof J, Maeda RK, Hediger M, Karch F, Basler K . An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci USA 2007; 104: 3312–3317.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Whited JL, Cassell A, Brouillette M, Garrity PA . Dynactin is required to maintain nuclear position within postmitotic Drosophila photoreceptor neurons. Development 2004; 131: 4677–4686.

    CAS  PubMed  Google Scholar 

  81. Hay BA, Wolff T, Rubin GM . Expression of baculovirus P35 prevents cell death in Drosophila. Development 1994; 120: 2121–2129.

    CAS  PubMed  Google Scholar 

  82. Adachi-Yamada T, Fujimura-Kamada K, Nishida Y, Matsumoto K . Distortion of proximodistal information causes JNK-dependent apoptosis in Drosophila wing. Nature 1999; 400: 166–169.

    CAS  PubMed  Google Scholar 

  83. Harden N, Ricos M, Ong YM, Chia W, Lim L . Participation of small GTPases in dorsal closure of the Drosophila embryo: distinct roles for Rho subfamily proteins in epithelial morphogenesis. J Cell Sci 1999; 112 (Pt 3): 273–284.

    CAS  PubMed  Google Scholar 

  84. Luo L, Liao YJ, Jan LY, Jan YN . Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev 1994; 8: 1787–1802.

    CAS  PubMed  Google Scholar 

  85. Spradling AC, Stern D, Beaton A, Rhem EJ, Laverty T, Mozden N et al. The Berkeley Drosophila Genome Project gene disruption project: single P-element insertions mutating 25% of vital Drosophila genes. Genetics 1999; 153: 135–177.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Uemura T, Oda H, Kraut R, Hayashi S, Kotaoka Y, Takeichi M . Zygotic Drosophila E-cadherin expression is required for processes of dynamic epithelial cell rearrangement in the Drosophila embryo. Genes Dev 1996; 10: 659–671.

    CAS  PubMed  Google Scholar 

  87. Hay BA, Wassarman DA, Rubin GM . Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 1995; 83: 1253–1262.

    CAS  PubMed  Google Scholar 

  88. Hamaratoglu F, Willecke M, Kango-Singh M, Nolo R, Hyun E, Tao C et al. The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol 2006; 8: 27–36.

    CAS  PubMed  Google Scholar 

  89. Roulier EM, Panzer S, Beckendorf SK . The Tec29 tyrosine kinase is required during Drosophila embryogenesis and interacts with Src64 in ring canal development. Mol Cell 1998; 1: 819–829.

    CAS  PubMed  Google Scholar 

  90. Myster SH, Cavallo R, Anderson CT, Fox DT, Peifer M . Drosophila p120catenin plays a supporting role in cell adhesion but is not an essential adherens junction component. J Cell Biol 2003; 160: 433–449.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Glise B, Bourbon H, Noselli S . hemipterous encodes a novel Drosophila MAP kinase kinase, required for epithelial cell sheet movement. Cell 1995; 83: 451–461.

    CAS  PubMed  Google Scholar 

  92. Klein T, Arias AM . Different spatial and temporal interactions between Notch, wingless, and vestigial specify proximal and distal pattern elements of the wing in Drosophila. Dev Biol 1998; 194: 196–212.

    CAS  PubMed  Google Scholar 

  93. Calleja M, Moreno E, Pelaz S, Morata G . Visualization of gene expression in living adult Drosophila. Science 1996; 274: 253–255.

    Google Scholar 

  94. Lee JD, Treisman JE . Sightless has homology to transmembrane acyltransferases and is required to generate active Hedgehog protein. Curr Biol 2001; 11: 1147–1152.

    CAS  PubMed  Google Scholar 

  95. Kurant E, Pai CY, Sharf R, Halachmi N, Sun YH, Salzberg A . Dorsotonals/homothorax, the Drosophila homologue of meis1, interacts with extradenticle in patterning of the embryonic PNS. Development 1998; 125: 1037–1048.

    CAS  PubMed  Google Scholar 

  96. Casares F, Mann RS . Control of antennal versus leg development in Drosophila. Nature 1998; 392: 723–726.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T Xu, B Hay, R Mann, A Laughon, G Morata, J Whited, the Bloomington Drosophila Stock Center, the National Institute of Genetics, The Vienna Drosophila Research Center and the Developmental Studies Hybridoma Bank for fly stocks and reagents. The manuscript was improved by the critical comments of Miguel G. Ferreira, Joana Vaz, Monica Bettencourt Dias and Christen Mirth. This work was supported by grants from Fundação para a Ciência e Tecnologia (FCT) (Grants PTDC/SAU-OBD/73191/2006 and PTDC/BIA-BCM/121455/2010). BGF and BJ were the recipients of fellowships from FCT SFRH/BPD/35915/2007 and SFRH/BD/33215/2007, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Janody.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, B., Jezowska, B. & Janody, F. Drosophila actin-Capping Protein limits JNK activation by the Src proto-oncogene. Oncogene 33, 2027–2039 (2014). https://doi.org/10.1038/onc.2013.155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.155

Keywords

This article is cited by

Search

Quick links