Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Loss of TSC2 confers resistance to ceramide and nutrient deprivation

Abstract

Nutrient stress that produces quiescence and catabolism in normal cells is lethal to cancer cells, because oncogenic mutations constitutively drive anabolism. One driver of biosynthesis in cancer cells is the mammalian target of rapamycin complex 1 (mTORC1) signaling complex. Activating mTORC1 by deleting its negative regulator tuberous sclerosis complex 2 (TSC2) leads to hypersensitivity to glucose deprivation. We have previously shown that ceramide kills cells in part by triggering nutrient transporter loss and restricting access to extracellular amino acids and glucose, suggesting that TSC2-deficient cells would be hypersensitive to ceramide. However, murine embryonic fibroblasts (MEFs) lacking TSC2 were highly resistant to ceramide-induced death. Consistent with the observation that ceramide limits access to both amino acids and glucose, TSC2−/− MEFs also had a survival advantage when extracellular amino acids and glucose were both reduced. As TSC2−/− MEFs were resistant to nutrient stress despite sustained mTORC1 activity, we assessed whether mTORC1 signaling might be beneficial under these conditions. In low amino acid and glucose medium, and following ceramide-induced nutrient transporter loss, elevated mTORC1 activity significantly enhanced the adaptive upregulation of new transporter proteins for amino acids and glucose. Strikingly, the introduction of oncogenic Ras abrogated the survival advantage of TSC2−/− MEFs upon ceramide treatment most likely by increasing nutrient demand. These results suggest that, in the absence of oncogene-driven biosynthetic demand, mTORC1-dependent translation facilitates the adaptive cellular response to nutrient stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Dazert E, Hall MN . mTOR signaling in disease. Curr Opin Cell Biol 2011; 23: 744–755.

    Article  CAS  PubMed  Google Scholar 

  2. Yecies JL, Manning BD . mTOR links oncogenic signaling to tumor cell metabolism. J Mol Med 2011; 89: 221–228.

    Article  CAS  PubMed  Google Scholar 

  3. Curatolo P, Bombardieri R, Jozwiak S . Tuberous sclerosis. Lancet 2008; 372: 657–668.

    Article  CAS  PubMed  Google Scholar 

  4. Dibble CC, Elis W, Menon S, Qin W, Klekota J, Asara JM et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 2012; 47: 535–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang J, Manning BD . The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 2008; 412: 179–190.

    Article  CAS  PubMed  Google Scholar 

  6. Choo AY, Kim SG, Vander Heiden MG, Mahoney SJ, Vu H, Yoon SO et al. Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Mol Cell 2010; 38: 487–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Inoki K, Zhu T, Guan KL . TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115: 577–590.

    Article  CAS  PubMed  Google Scholar 

  8. Ogretmen B, Hannun YA . Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 2004; 4: 604–616.

    Article  CAS  PubMed  Google Scholar 

  9. Guenther GG, Peralta ER, Rosales KR, Wong SY, Siskind LJ, Edinger AL . Ceramide starves cells to death by downregulating nutrient transporter proteins. Proc Natl Acad Sci USA 2008; 105: 17402–17407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Romero Rosales K, Singh G, Wu K, Chen J, Janes MR, Lilly MB et al. Sphingolipid-based drugs selectively kill cancer cells by down-regulating nutrient transporter proteins. Biochem J 2011; 439: 299–311.

    Article  CAS  PubMed  Google Scholar 

  11. Le Stunff H, Giussani P, Maceyka M, Lepine S, Milstien S, Spiegel S . Recycling of sphingosine is regulated by the concerted actions of sphingosine-1-phosphate phosphohydrolase 1 and sphingosine kinase 2. J Biol Chem 2007; 282: 34372–34380.

    Article  CAS  PubMed  Google Scholar 

  12. Ogretmen B, Pettus BJ, Rossi MJ, Wood R, Usta J, Szulc Z et al. Biochemical mechanisms of the generation of endogenous long chain ceramide in response to exogenous short chain ceramide in the A549 human lung adenocarcinoma cell line. Role for endogenous ceramide in mediating the action of exogenous ceramide. J Biol Chem 2002; 277: 12960–12969.

    Article  CAS  PubMed  Google Scholar 

  13. Bhaskar PT, Nogueira V, Patra KC, Jeon SM, Park Y, Robey RB et al. mTORC1 hyperactivity inhibits serum deprivation-induced apoptosis via increased hexokinase II and GLUT1 expression, sustained Mcl-1 expression, and glycogen synthase kinase 3beta inhibition. Mol Cell Biol 2009; 29: 5136–5147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jewell JL, Russell RC, Guan KL . Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol 2013; 14: 133–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yuan HX, Xiong Y, Guan KL . Nutrient sensing, metabolism, and cell growth control. Mol Cell. 2013; 49: 379–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM . Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010; 141: 290–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008; 320: 1496–1501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30: 214–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pende M, Um SH, Mieulet V, Sticker M, Goss VL, Mestan J et al. S6K1(−/−)/S6K2(−/−) mice exhibit perinatal lethality and rapamycin-sensitive 5'-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol Cell Biol 2004; 24: 3112–3124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Menon S, Manning BD . Common corruption of the mTOR signaling network in human tumors. Oncogene 2009; 27 (Suppl 2): S43–S51.

    Google Scholar 

  21. Dobrowsky RT, Kamibayashi C, Mumby MC, Hannun YA . Ceramide activates heterotrimeric protein phosphatase 2A. J Biol Chem 1993; 268: 15523–15530.

    CAS  PubMed  Google Scholar 

  22. Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 2004; 166: 213–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tremblay F, Brule S, Hee UmS, Li Y, Masuda K, Roden M et al. Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance. Proc Natl Acad Sci USA 2007; 104: 14056–14061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shah OJ, Hunter T . Turnover of the active fraction of IRS1 involves raptor-mTOR- and S6K1-dependent serine phosphorylation in cell culture models of tuberous sclerosis. Mol Cell Biol 2006; 26: 6425–6434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou H, Summers SA, Birnbaum MJ, Pittman RN . Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis. J Biol Chem 1998; 273: 16568–16575.

    Article  CAS  PubMed  Google Scholar 

  26. Schubert KM, Scheid MP, Duronio V . Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473. J Biol Chem 2000; 275: 13330–13335.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang HH, Huang J, Duvel K, Boback B, Wu S, Squillace RM et al. Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway. PloS One 2009; 4: e6189.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huang J, Dibble CC, Matsuzaki M, Manning BD . The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol 2008; 28: 4104–4115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aronova S, Wedaman K, Aronov PA, Fontes K, Ramos K, Hammock BD et al. Regulation of ceramide biosynthesis by TOR complex 2. Cell Metab 2008; 7: 148–158.

    Article  CAS  PubMed  Google Scholar 

  30. Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 2006; 11: 859–871.

    Article  CAS  PubMed  Google Scholar 

  31. Edinger AL, Thompson CB . An activated mTOR mutant supports growth factor-independent, nutrient-dependent cell survival. Oncogene 2004; 23: 5654–5663.

    Article  CAS  PubMed  Google Scholar 

  32. Edinger AL, Thompson CB . Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell 2002; 13: 2276–2288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matsumoto S, Bandyopadhyay A, Kwiatkowski DJ, Maitra U, Matsumoto T . Role of the Tsc1-Tsc2 complex in signaling and transport across the cell membrane in the fission yeast Schizosaccharomyces pombe. Genetics 2002; 161: 1053–1063.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kanai Y, Segawa H, Miyamoto K, Uchino H, Takeda E, Endou H . Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem 1998; 273: 23629–23632.

    Article  CAS  PubMed  Google Scholar 

  35. Park NS, Kim SG, Kim HK, Moon SY, Kim CS, Cho SH et al. Characterization of amino acid transport system L in HTB-41 human salivary gland epidermoid carcinoma cells. Anticancer Res 2008; 28: 2649–2655.

    CAS  PubMed  Google Scholar 

  36. Short JD, Houston KD, Dere R, Cai SL, Kim J, Johnson CL et al. AMP-activated protein kinase signaling results in cytoplasmic sequestration of p27. Cancer Res 2008; 68: 6496–6506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lacher MD, Pincheira R, Zhu Z, Camoretti-Mercado B, Matli M, Warren RS et al. Rheb activates AMPK and reduces p27Kip1 levels in Tsc2-null cells via mTORC1-independent mechanisms: implications for cell proliferation and tumorigenesis. Oncogene 2010; 29: 6543–6556.

    Article  CAS  PubMed  Google Scholar 

  38. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108: 1167–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wek RC, Jiang HY, Anthony TG . Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 2006; 34: 7–11.

    Article  CAS  PubMed  Google Scholar 

  40. Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W . Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 2006; 125: 1111–1124.

    Article  CAS  PubMed  Google Scholar 

  41. Fernandez J, Yaman I, Mishra R, Merrick WC, Snider MD, Lamers WH et al. Internal ribosome entry site-mediated translation of a mammalian mRNA is regulated by amino acid availability. J Biol Chem 2001; 276: 12285–12291.

    Article  CAS  PubMed  Google Scholar 

  42. Bain PJ, LeBlanc-Chaffin R, Chen H, Palii SS, Leach KM, Kilberg MS . The mechanism for transcriptional activation of the human ATA2 transporter gene by amino acid deprivation is different than that for asparagine synthetase. J Nutr 2002; 132: 3023–3029.

    Article  CAS  PubMed  Google Scholar 

  43. Gazzola RF, Sala R, Bussolati O, Visigalli R, Dall’Asta V, Ganapathy V et al. The adaptive regulation of amino acid transport system A is associated to changes in ATA2 expression. FEBS Lett 2001; 490: 11–14.

    Article  CAS  PubMed  Google Scholar 

  44. Gaccioli F, Huang CC, Wang C, Bevilacqua E, Franchi-Gazzola R, Gazzola GC et al. Amino acid starvation induces the SNAT2 neutral amino acid transporter by a mechanism that involves eukaryotic initiation factor 2alpha phosphorylation and cap-independent translation. J Biol Chem 2006; 281: 17929–17940.

    Article  PubMed  Google Scholar 

  45. Kang YJ, Lu MK, Guan KL . The TSC1 and TSC2 tumor suppressors are required for proper ER stress response and protect cells from ER stress-induced apoptosis. Cell Death Differ 2011; 18: 133–144.

    Article  CAS  PubMed  Google Scholar 

  46. Ng S, Wu YT, Chen B, Zhou J, Shen HM . Impaired autophagy due to constitutive mTOR activation sensitizes TSC2-null cells to cell death under stress. Autophagy 2011; 7: 1173–1186.

    Article  CAS  PubMed  Google Scholar 

  47. Parkhitko A, Myachina F, Morrison TA, Hindi KM, Auricchio N, Karbowniczek M et al. Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent. Proc Natl Acad Sci USA 2011; 108: 12455–12460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012; 8: 445–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brugarolas JB, Vazquez F, Reddy A, Sellers WR, Kaelin WG Jr. . TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 2003; 4: 147–158.

    Article  CAS  PubMed  Google Scholar 

  50. Kaper F, Dornhoefer N, Giaccia AJ . Mutations in the PI3K/PTEN/TSC2 pathway contribute to mammalian target of rapamycin activity and increased translation under hypoxic conditions. Cancer Res 2006; 66: 1561–1569.

    Article  CAS  PubMed  Google Scholar 

  51. Duran RV, Hall MN . Regulation of TOR by small GTPases. EMBO Rep 2012; 13: 121–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim J, Guan KL . Amino acid signaling in TOR activation. Annu Rev Biochem 2011; 80: 1001–1032.

    Article  CAS  PubMed  Google Scholar 

  53. Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Dai N . Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab 2009; 296: E592–E602.

    Article  CAS  PubMed  Google Scholar 

  54. Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 2004; 6: 91–99.

    Article  CAS  PubMed  Google Scholar 

  55. Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci USA 2005; 102: 14238–14243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Roccio M, Bos JL, Zwartkruis FJ . Regulation of the small GTPase Rheb by amino acids. Oncogene 2006; 25: 657–664.

    Article  CAS  PubMed  Google Scholar 

  57. Gao X, Zhang Y, Arrazola P, Hino O, Kobayashi T, Yeung RS et al. Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat Cell Biol 2002; 4: 699–704.

    Article  CAS  PubMed  Google Scholar 

  58. Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL . Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 2008; 10: 935–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim SG, Hoffman GR, Poulogiannis G, Buel GR, Jang YJ, Lee KW et al. Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol Cell 2013; 49: 172–185.

    Article  CAS  PubMed  Google Scholar 

  60. Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J . Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 2003; 13: 1259–1268.

    Article  CAS  PubMed  Google Scholar 

  61. Inoki K, Li Y, Xu T, Guan KL . Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 2003; 17: 1829–1834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li B, Gordon GM, Du CH, Xu J, Du W . Specific killing of Rb mutant cancer cells by inactivating TSC2. Cancer Cell 2010; 17: 469–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Teske BF, Baird TD, Wek RC . Methods for analyzing eIF2 kinases and translational control in the unfolded protein response. Methods Enzymol 2011; 490: 333–356.

    Article  CAS  PubMed  Google Scholar 

  64. Manel N, Kim FJ, Kinet S, Taylor N, Sitbon M, Battini JL . The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV. Cell 2003; 115: 449–459.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH R01-GM089919, American Cancer Society grant 120976-RSG-11-111-01-CDD, W81XWH-11-1-0535 from the Army Medical Research & Materiel Command, and SIIG-1-2007-2008 from the UCI CORCL to ALE. GGG and ANM were supported by grant number T32CA009054 from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A L Edinger.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guenther, G., Liu, G., Ramirez, M. et al. Loss of TSC2 confers resistance to ceramide and nutrient deprivation. Oncogene 33, 1776–1787 (2014). https://doi.org/10.1038/onc.2013.139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.139

Keywords

This article is cited by

Search

Quick links