Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Theileria induces oxidative stress and HIF1α activation that are essential for host leukocyte transformation

Abstract

Complex links between infection and cancer suggest that we still can learn much about tumorigenesis by studying how infectious agents hijack the host cell machinery. We studied the effects of an intracellular parasite called Theileria that infects bovine leukocytes and turns them into invasive cancer-like cells. We investigated the host cells pathways that are deregulated in infected leukocytes and might link infection and lymphoproliferative disease. We show that intracellular Theileria parasites drive a Warburg-like phenotype in infected host leukocytes, characterized by increased expression of metabolic regulators, increased glucose uptake and elevated lactate production, which were lost when the parasite was eliminated. The cohabitation of the parasites within the host cells leads to disruption of the redox balance (as measured by reduced/oxidized glutathione ratio) and elevated ROS (reactive oxygen species) levels, associated with chronic stabilization of the hypoxia-inducible factor 1 alpha (HIF1α). Inhibition of HIF1α (pharmacologically or genetically), or treatment with antioxidants, led to a marked reduction in expression of aerobic glycolytic genes and inhibited the transformed phenotype. These data show that stabilization of HIF1α, following increased ROS production, modulates host glucose metabolism and is critical for parasite-induced transformation. Our study expands knowledge about the molecular strategy used by the parasite Theileria to induce the transformed phenotypes of infected cells via reprogramming of glucose metabolism and redox signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chaussepied M, Langsley G . Theileria transformation of bovine leukocytes: a parasite model for the study of lymphoproliferation. Res Immunol 1996; 147: 127–138.

    Article  CAS  PubMed  Google Scholar 

  2. Dobbelaere D, Heussler V . Transformation of leukocytes by Theileria parva and T. annulata. Annu Rev Microbiol 1999; 53: 1–42.

    Article  CAS  PubMed  Google Scholar 

  3. Lizundia R, Chaussepied M, Huerre M, Werling D, Di Santo JP, Langsley G . c-Jun NH2-terminal kinase/c-Jun signaling promotes survival and metastasis of B lymphocytes transformed by Theileria. Cancer Res 2006; 66: 6105–6110.

    Article  CAS  PubMed  Google Scholar 

  4. Chaussepied M, Janski N, Baumgartner M, Lizundia R, Jensen K, Weir W et al. TGF-b2 induction regulates invasiveness of Theileria-transformed leukocytes and disease susceptibility. PLoS Pathog 2010; 6: e1001197.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Somerville RP, Adamson RE, Brown CG, Hall FR . Metastasis of Theileria annulata macroschizont-infected cells in scid mice is mediated by matrix metalloproteinases. Parasitology 1998; 116 (Pt 3): 223–228.

    Article  CAS  PubMed  Google Scholar 

  6. Dobbelaere DA, Coquerelle TM, Roditi IJ, Eichhorn M, Williams RO . Theileria parva infection induces autocrine growth of bovine lymphocytes. Proc Natl Acad Sci USA 1988; 85: 4730–4734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Muraguri GR, Kiara HK, McHardy N . Treatment of East Coast fever: a comparison of parvaquone and buparvaquone. Vet Parasitol 1999; 87: 25–37.

    Article  CAS  PubMed  Google Scholar 

  8. Galley Y, Hagens G, Glaser I, Davis W, Eichhorn M, Dobbelaere D . Jun NH2-terminal kinase is constitutively activated in T cells transformed by the intracellular parasite Theileria parva. Proc Natl Acad Sci USA 1997; 94: 5119–5124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chaussepied M, Lallemand D, Moreau MF, Adamson R, Hall R, Langsley G . Upregulation of Jun and Fos family members and permanent JNK activity lead to constitutive AP-1 activation in Theileria-transformed leukocytes. Mol Biochem Parasitol 1998; 94: 215–226.

    Article  CAS  PubMed  Google Scholar 

  10. Dessauge F, Hilaly S, Baumgartner M, Blumen B, Werling D, Langsley G . c-Myc activation by Theileria parasites promotes survival of infected B-lymphocytes. Oncogene 2004; 24: 1075–1083.

    Article  Google Scholar 

  11. Mentis AF, Kararizou E . Metabolism and cancer: an up-to-date review of a mutual connection. Asian Pac J Cancer Prev 2010; 11: 1437–1444.

    PubMed  Google Scholar 

  12. Seyfried TN, Shelton LM . Cancer as a metabolic disease. Nutr Metab (Lond) 2010; 7: 7.

    Article  Google Scholar 

  13. Koppenol WH, Bounds PL, Dang CV . Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 2011; 11: 325–337.

    Article  CAS  PubMed  Google Scholar 

  14. Warburg O . On the origin of cancer cells. Science 1956; 123: 309–314.

    Article  CAS  PubMed  Google Scholar 

  15. Yeung SJ, Pan J, Lee MH . Roles of p53, MYC and HIF-1 in regulating glycolysis - the seventh hallmark of cancer. Cell Mol Life Sci 2008; 65: 3981–3999.

    Article  CAS  PubMed  Google Scholar 

  16. Gatenby RA, Gillies RJ . Why do cancers have high aerobic glycolysis? Nat Rev Cancer 2004; 4: 891–899.

    Article  CAS  PubMed  Google Scholar 

  17. Wenger RH, Stiehl DP, Camenisch G . Integration of oxygen signaling at the consensus HRE. Sci STKE 2005; 2005: re12.

    PubMed  Google Scholar 

  18. Vander Heiden MG, Cantley LC, Thompson CB . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Semenza GL . HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J Bioenerg Biomembr 2007; 39: 231–234.

    Article  CAS  PubMed  Google Scholar 

  20. Favier J, Briere JJ, Burnichon N, Riviere J, Vescovo L, Benit P et al. The Warburg effect is genetically determined in inherited pheochromocytomas. PLoS One 2009; 4: e7094.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dang CV, Semenza GL . Oncogenic alterations of metabolism. Trends Biochem Sci 1999; 24: 68–72.

    Article  CAS  PubMed  Google Scholar 

  22. Denko NC . Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 2008; 8: 705–713.

    Article  CAS  PubMed  Google Scholar 

  23. Semenza GL . Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003; 3: 721–732.

    Article  CAS  PubMed  Google Scholar 

  24. Theilen GH, Rush JD, Nelson-Rees WA, Dungworth DL, Munn RJ, Switzer JW . Bovine leukemia: establishment and morphologic characterization of continuous cell suspension culture, BL-1. J Natl Cancer Inst 1968; 40: 737–749.

    CAS  PubMed  Google Scholar 

  25. Gillies RJ, Robey I, Gatenby RA . Causes and consequences of increased glucose metabolism of cancers. J Nucl Med 2008; 49 (Suppl 2): 24S–42S.

    Article  CAS  PubMed  Google Scholar 

  26. Shaw RJ . Glucose metabolism and cancer. Curr Opin Cell Biol 2006; 18: 598–608.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang H, Qian DZ, Tan YS, Lee K, Gao P, Ren YR et al. Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. Proc Natl Acad Sci USA 2008; 105: 19579–19586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001; 292: 468–472.

    Article  CAS  PubMed  Google Scholar 

  29. Masella R, Di Benedetto R, Vari R, Filesi C, Giovannini C . Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem 2005; 16: 577–586.

    Article  CAS  PubMed  Google Scholar 

  30. Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL . Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 2009; 390: 191–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Narayanan BA . Chemopreventive agents alters global gene expression pattern: predicting their mode of action and targets. Curr Cancer Drug Targets 2006; 6: 711–727.

    Article  CAS  PubMed  Google Scholar 

  32. Gao P, Zhang H, Dinavahi R, Li F, Xiang Y, Raman V et al. HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell 2007; 12: 230–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dobbelaere D . Theileria-induced leukocyte transformation. Curr Opin Microbiol 2003; 6: 377–382.

    Article  CAS  PubMed  Google Scholar 

  34. Shiels B, Langsley G, Weir W, Pain A, McKellar S, Dobbelaere D . Alteration of host cell phenotype by Theileria annulata and Theileria parva: mining for manipulators in the parasite genomes. Int J Parasitol 2006; 36: 9–21.

    Article  CAS  PubMed  Google Scholar 

  35. Levine AJ, Puzio-Kuter AM . The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 2010; 330: 1340–1344.

    Article  CAS  PubMed  Google Scholar 

  36. Wellen KE, Thompson CB . Cellular metabolic stress: considering how cells respond to nutrient excess. Mol Cell 2010; 40: 323–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Baumgartner M, Chaussepied M, Moreau MF, Werling D, Davis WC, Garcia A et al. Constitutive PI3-K activity is essential for proliferation, but not survival, of Theileria parva-transformed B cells. Cell Microbiol 2000; 2: 329–339.

    Article  CAS  PubMed  Google Scholar 

  38. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB . Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 2010; 49: 1603–1616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ralph SJ, Rodriguez-Enriquez S, Neuzil J, Saavedra E, Moreno-Sanchez R . The causes of cancer revisited: ‘mitochondrial malignancy’ and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy. Mol Aspects Med 2010; 31: 145–170.

    Article  CAS  PubMed  Google Scholar 

  40. Lopez-Lazaro M . Excessive superoxide anion generation plays a key role in carcinogenesis. Int J Cancer 2007; 120: 1378–1380.

    Article  CAS  PubMed  Google Scholar 

  41. Lopez-Lazaro M . Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. Cancer Lett 2007; 252: 1–8.

    Article  CAS  PubMed  Google Scholar 

  42. Fruehauf JP, Meyskens FL Jr . Reactive oxygen species: a breath of life or death? Clin Cancer Res 2007; 13: 789–794.

    Article  CAS  PubMed  Google Scholar 

  43. Spear W, Chan D, Coppens I, Johnson RS, Giaccia A, Blader IJ . The host cell transcription factor hypoxia-inducible factor 1 is required for Toxoplasma gondii growth and survival at physiological oxygen levels. Cell Microbiol 2006; 8: 339–352.

    Article  CAS  PubMed  Google Scholar 

  44. Wiley M, Sweeney KR, Chan DA, Brown KM, McMurtrey C, Howard EW et al. Toxoplasma gondii activates hypoxia-inducible factor (HIF) by stabilizing the HIF-1alpha subunit via type I activin-like receptor kinase receptor signaling. J Biol Chem 2010; 285: 26852–26860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Poyton RO, Ball KA, Castello PR . Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab 2009; 20: 332–340.

    Article  CAS  PubMed  Google Scholar 

  46. Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B, Gillies RJ . Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res. 2006; 66: 5216–5223.

    Article  CAS  PubMed  Google Scholar 

  47. Olobo JO, Black SJ . Selected phenotypic and cloning properties of a bovine lymphoblastoid cell line, BL20. Vet Immunol Immunopathol 1989; 20: 165–172.

    Article  CAS  PubMed  Google Scholar 

  48. Shiels BR, McDougall C, Tait A, Brown CG . Identification of infection-associated antigens in Theileria annulata transformed cells. Parasite Immunol 1986; 8: 69–77.

    Article  CAS  PubMed  Google Scholar 

  49. Moreau MF, Thibaud JL, Miled LB, Chaussepied M, Baumgartner M, Davis WC et al. Theileria annulata in CD+5 Macrophages and B1 B Cells. Infect Immun 1999; 67: 6678–6682.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hudson AT, Randall AW, Fry M, Ginger CD, Hill B, Latter VS et al. Novel anti-malarial hydroxynaphthoquinones with potent broad spectrum anti-protozoal activity. Parasitology 1985; 90 (Pt 1): 45–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Slimane Ait-Si-Ali and Pierre-Antoine Defossez for critical reading of the manuscript and members of the UMR 7216 for helpful discussions. We thank Gordon Langsley for the generous gift of reagents, the Theileria-infected cell lines, the AP1-Luciferase reporter and for helpful discussions about our work. We thank Peter Staller (Biotech Research & Innovation Center, Denmark) for kindly providing the 5xHRE-luciferase constructs and Sebastien Jauliac for providing the NF-κB-Luciferase reporter. We also thank the Bioprofiler facility (Université Paris Diderot) for HPLC analysis. We thank Ayad Eddaoudi (Institute of Child Health, London, UK) for expert technical support in flow cytometry analysis. This work was supported by grants from the Association pour la Recherche contre le Cancer (ARC no. 4975 and 7990) (JBW), the Association for International Cancer Research (AICR, no. 08-0111) (JBW) and appel d'offre ‘Actions Spécifiques 2012’ Université Paris Diderot. All infected bovine cell lines used in this study have been previously characterized and published.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J B Weitzman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medjkane, S., Perichon, M., Marsolier, J. et al. Theileria induces oxidative stress and HIF1α activation that are essential for host leukocyte transformation. Oncogene 33, 1809–1817 (2014). https://doi.org/10.1038/onc.2013.134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.134

Keywords

This article is cited by

Search

Quick links