Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Endothelin-1 promotes vascular endothelial growth factor-dependent angiogenesis in human chondrosarcoma cells

Abstract

Chondrosarcoma is the second most common sarcoma in bone malignancy and is characterized by a high metastatic potential. Angiogenesis is essential for the cancer metastasis. Endothelin-1 (ET-1) has been implicated in tumor angiogenesis and metastasis. However, the relationship of ET-1 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma cells is mostly unknown. Here, we found that the expression of ET-1 and VEGF were correlated with tumor stage and were significantly higher than that in the normal cartilage. Exogenous ET-1 with chondrosarcoma cells promoted VEGF expression and subsequently increased migration and tube formation in endothelial progenitor cells. ET-1 increased VEGF expression and angiogenesis through ETAR, integrin-linked kinase (ILK), Akt and hypoxia-inducible factor-1α (HIF-1α) signaling cascades. Knockdown of ET-1 decreased VEGF expression and also abolished chondrosarcoma conditional medium-mediated angiogenesis in vitro as well as angiogenesis effects in the chick chorioallantoic membrane and Matrigel plug nude mice model in vivo. In addition, in the xenograft tumor angiogenesis model, knockdown of ET-1 significantly reduced tumor growth and tumor-associated angiogenesis. Taken together, these results indicate that ET-1 occurs through ETAR, ILK and Akt, which in turn activates HIF-1α, resulting in the activation of VEGF expression and contributing to the angiogenesis and tumor growth of human chondrosarcoma cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Terek RM, Schwartz GK, Devaney K, Glantz L, Mak S, Healey JH et al. Chemotherapy and P-glycoprotein expression in chondrosarcoma. J Orthop Res 1998; 16: 585–590.

    Article  CAS  Google Scholar 

  2. Bishayee A, Darvesh AS . Angiogenesis in hepatocellular carcinoma: a potential target for chemoprevention and therapy. Curr Cancer Drug Targets 2012; 12: 1095–1118.

    CAS  PubMed  Google Scholar 

  3. Albini A, Tosetti F, Li VW, Noonan DM, Li WW . Cancer prevention by targeting angiogenesis. Nat Rev Clin Oncol 2012; 9: 498–509.

    Article  CAS  Google Scholar 

  4. Weis SM, Cheresh DA . Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 2011; 17: 1359–1370.

    Article  CAS  Google Scholar 

  5. Keating AM, Jacobs DS . Anti-VEGF treatment of corneal neovascularization. Ocul Surf 2011; 9: 227–237.

    Article  Google Scholar 

  6. Herrmann E, Bogemann M, Bierer S, Eltze E, Hertle L, Wulfing C . The endothelin axis in urologic tumors: mechanisms of tumor biology and therapeutic implications. Expert Rev Anticancer Ther 2006; 6: 73–81.

    Article  CAS  Google Scholar 

  7. Wulfing P, Kersting C, Tio J, Fischer RJ, Wulfing C, Poremba C et al. Endothelin-1-, endothelin-A-, and endothelin-B-receptor expression is correlated with vascular endothelial growth factor expression and angiogenesis in breast cancer. Clin Cancer Res 2004; 10: 2393–2400.

    Article  Google Scholar 

  8. Lahav R, Suva ML, Rimoldi D, Patterson PH, Stamenkovic I . Endothelin receptor B inhibition triggers apoptosis and enhances angiogenesis in melanomas. Cancer Res 2004; 64: 8945–8953.

    Article  CAS  Google Scholar 

  9. Lamagna C, Aurrand-Lions M, Imhof BA . Dual role of macrophages in tumor growth and angiogenesis. J Leukocyte Biol 2006; 80: 705–713.

    Article  CAS  Google Scholar 

  10. Spinella F, Rosano L, Del Duca M, Di Castro V, Nicotra MR, Natali PG et al. Endothelin-1 inhibits prolyl hydroxylase domain 2 to activate hypoxia-inducible factor-1alpha in melanoma cells. PLoS One 2010; 5: e11241.

    Article  Google Scholar 

  11. Boldrini L, Pistolesi S, Gisfredi S, Ursino S, Ali G, Pieracci N et al. Expression of endothelin 1 and its angiogenic role in meningiomas. Virchows Archiv 2006; 449: 546–553.

    Article  CAS  Google Scholar 

  12. Zhou WQ, Yin HL, Zhang ZY, Yi XM, Ge JP, Zhou SG et al. [Expression of VEGF in prostate cancer and its correlation with ET-1]. Natl J Androl 2008; 14: 987–992.

    CAS  Google Scholar 

  13. Wu MH, Lo JF, Kuo CH, Lin JA, Lin YM, Chen LM et al. Endothelin-1 promotes MMP-13 production and migration in human chondrosarcoma cells through FAK/PI3K/Akt/mTOR pathways. J Cell Physiol 2012; 227: 3016–3026.

    Article  CAS  Google Scholar 

  14. Venuti A, Salani D, Cirilli A, Simeone P, Muller A et al. Endothelin receptor blockade inhibits the growth of human papillomavirus-associated cervical carcinoma. Clin Sci (Lond) 2002; 103 (Suppl 48): 310S–313SS.

    Article  CAS  Google Scholar 

  15. Nagy JA, Dvorak AM, Dvorak HF . VEGF-A and the induction of pathological angiogenesis. Annu Rev Pathol 2007; 2: 251–275.

    Article  CAS  Google Scholar 

  16. Bergers G, Benjamin LE . Tumorigenesis and the angiogenic switch. Nat Rev Cancer 2003; 3: 401–410.

    Article  CAS  Google Scholar 

  17. Villers A, Neuzillet Y, Beuzeboc P . Inhibitors of the receptor A for endothelin-1. Progr Urol 2010; 20 (Suppl 1): S77–S79.

    Article  Google Scholar 

  18. Merino M, Pinto A, Gonzalez R, Espinosa E . Antiangiogenic agents and endothelin antagonists in advanced castration resistant prostate cancer. Eur J Cancer 2011; 47: 1846–1851.

    Article  CAS  Google Scholar 

  19. Kaneko Y, Kitazato K, Basaki Y . Integrin-linked kinase regulates vascular morphogenesis induced by vascular endothelial growth factor. J Cell Sci 2004; 117 (Part 3): 407–415.

    CAS  PubMed  Google Scholar 

  20. Camenisch G, Stroka DM, Gassmann M, Wenger RH . Attenuation of HIF-1 DNA-binding activity limits hypoxia-inducible endothelin-1 expression. Pflugers Arch 2001; 443: 240–249.

    Article  CAS  Google Scholar 

  21. Whitman EM, Pisarcik S, Luke T, Fallon M, Wang J, Sylvester JT et al. Endothelin-1 mediates hypoxia-induced inhibition of voltage-gated K+ channel expression in pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol 2008; 294: L309–L318.

    Article  CAS  Google Scholar 

  22. Yen ML, Su JL, Chien CL, Tseng KW, Yang CY, Chen WF et al. Diosgenin induces hypoxia-inducible factor-1 activation and angiogenesis through estrogen receptor-related phosphatidylinositol 3-kinase/Akt and p38 mitogen-activated protein kinase pathways in osteoblasts. Mol Pharmacol 2005; 68: 1061–1073.

    Article  CAS  Google Scholar 

  23. Bagnato A, Spinella F, Rosano L . The endothelin axis in cancer: the promise and the challenges of molecularly targeted therapy. Canad J Physiol Pharmacol 2008; 86: 473–484.

    Article  CAS  Google Scholar 

  24. Demunter A, De Wolf-Peeters C, Degreef H, Stas M, van den Oord JJ . Expression of the endothelin-B receptor in pigment cell lesions of the skin. Evidence for its role as tumor progression marker in malignant melanoma. Virchows Archiv 2001; 438: 485–491.

    Article  CAS  Google Scholar 

  25. Spinella F, Rosano L, Di Castro V, Natali PG, Bagnato A . Endothelin-1-induced prostaglandin E2-EP2, EP4 signaling regulates vascular endothelial growth factor production and ovarian carcinoma cell invasion. J Biol Chem 2004; 279: 46700–46705.

    Article  CAS  Google Scholar 

  26. Bagnato A, Spinella F . Emerging role of endothelin-1 in tumor angiogenesis. Trends Endocrinol Metab 2003; 14: 44–50.

    Article  CAS  Google Scholar 

  27. Lahav R, Heffner G, Patterson PH . An endothelin receptor B antagonist inhibits growth and induces cell death in human melanoma cells in vitro and in vivo. Proc Natl Acad Sci USA 1999; 96: 11496–11500.

    Article  CAS  Google Scholar 

  28. Zhang H, Han Y, Tao J, Liu S, Yan C, Li S . Cellular repressor of E1A-stimulated genes regulates vascular endothelial cell migration by the ILK/AKT/mTOR/VEGF(165) signaling pathway. Exp Cell Res 2011; 317: 2904–2913.

    Article  CAS  Google Scholar 

  29. Tseng WP, Yang SN, Lai CH, Tang CH . Hypoxia induces BMP-2 expression via ILK, Akt, mTOR, and HIF-1 pathways in osteoblasts. J Cell Physiol 2010; 223: 810–818.

    CAS  PubMed  Google Scholar 

  30. Rosano L, Spinella F, Di Castro V, Dedhar S, Nicotra MR, Natali PG et al. Integrin-linked kinase functions as a downstream mediator of endothelin-1 to promote invasive behavior in ovarian carcinoma. Mol Cancer Therap 2006; 5: 833–842.

    Article  CAS  Google Scholar 

  31. Cianfrocca R, Rosano L, Spinella F, Di Castro V, Natali PG, Bagnato A . Beta-arrestin-1 mediates the endothelin-1-induced activation of Akt and integrin-linked kinase. Canad J Physiol Pharmacol 2010; 88: 796–801.

    Article  CAS  Google Scholar 

  32. Wang HH, Lin CA, Lee CH, Lin YC, Tseng YM, Hsieh CL et al. Fluorescent gold nanoclusters as a biocompatible marker for in vitro and in vivo tracking of endothelial cells. ACS Nano 2011; 5: 4337–4344.

    Article  CAS  Google Scholar 

  33. Hsieh MT, Hsieh CL, Lin LW, Wu CR, Huang GS . Differential gene expression of scopolamine-treated rat hippocampus-application of cDNA microarray technology. Life Sci 2003; 73: 1007–1016.

    Article  CAS  Google Scholar 

  34. Wang YC, Lee PJ, Shih CM, Chen HY, Lee CC, Chang YY et al. Damage formation and repair efficiency in the p53 gene of cell lines and blood lymphocytes assayed by multiplex long quantitative polymerase chain reaction. Anal Biochem 2003; 319: 206–215.

    Article  CAS  Google Scholar 

  35. Huang HC, Shi GY, Jiang SJ, Shi CS, Wu CM, Yang HY et al. Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. J Biol Chem 2003; 278: 46750–46759.

    Article  CAS  Google Scholar 

  36. Tseng CP, Huang CL, Huang CH, Cheng JC, Stern A, Tseng CH et al. Disabled-2 small interfering RNA modulates cellular adhesive function and MAPK activity during megakaryocytic differentiation of K562 cells. FEBS Lett 2003; 541: 21–27.

    Article  CAS  Google Scholar 

  37. Tang CH, Lu DY, Tan TW, Fu WM, Yang RS . Ultrasound induces hypoxia-inducible factor-1 activation and inducible nitric-oxide synthase expression through the integrin/integrin-linked kinase/Akt/mammalian target of rapamycin pathway in osteoblasts. J Biol Chem 2007; 282: 25406–25415.

    Article  CAS  Google Scholar 

  38. Xia X, Lemieux ME, Li W, Carroll JS, Brown M, Liu XS et al. Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc Natl Acad Sci USA 2009; 106: 4260–4265.

    Article  CAS  Google Scholar 

  39. Nickols NG, Jacobs CS, Farkas ME, Dervan PB . Modulating hypoxia-inducible transcription by disrupting the HIF-1–DNA interface. ACS Chem Biol 2007; 2: 561–571.

    Article  CAS  Google Scholar 

  40. Storgard C, Mikolon D, Stupack DG . Angiogenesis assays in the chick CAM. Methods Mol Biol 2005; 294: 123–136.

    PubMed  Google Scholar 

  41. Passaniti A, Taylor RM, Pili R, Guo Y, Long PV, Haney JA et al. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest 1992; 67: 519–528.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr WM Fu for providing Akt mutant and HRE promoter construct. This work was supported by grants from the National Science Council of Taiwan (NSC99-2320-B-039-003-MY3 and NSC100-2320-B-039-028-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C-H Tang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, MH., Huang, CY., Lin, JA. et al. Endothelin-1 promotes vascular endothelial growth factor-dependent angiogenesis in human chondrosarcoma cells. Oncogene 33, 1725–1735 (2014). https://doi.org/10.1038/onc.2013.109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.109

Keywords

This article is cited by

Search

Quick links