Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

5-Aza-2′-deoxycytidine-induced genome rearrangements are mediated by DNMT1

Abstract

Observations that genome-wide DNA hypomethylation induces genome instability and tumors in animals caution against the indiscriminate use of demethylating agents, such as 5-aza-2′-deoxycytidine (5-Aza-dC). Using primary mouse embryonic fibroblasts harboring a lacZ mutational reporter construct that allows the quantification and characterization of a wide range of mutational events, we found that, in addition to demethylation, treatment with 5-Aza-dC induces γ-H2AX expression, a marker for DNA breaks, and both point mutations and genome rearrangements. To gain insight into the source of these mutations, we first tested the hypothesis that the mutagenic effect of 5-Aza-dC may be directly mediated through the DNA methyltransferase 1 (DNMT1) covalently trapped in 5-Aza-dC-substituted DNA. Knockdown of DNMT1 resulted in increased resistance to the cytostatic effects of 5-Aza-dC, delayed onset of γ-H2AX expression and a significant reduction in the frequency of genome rearrangements. There was no effect on the 5-Aza-dC-induced point mutations. An alternative mechanism for 5-Aza-dC-induced demethylation and genome rearrangements via activation-induced cytidine deaminase (AID) followed by base excision repair (BER) was found not to be involved. That is, 5-Aza-dC treatment did not significantly induce AID expression and inhibition of BER did not reduce the frequency of genome rearrangements. Thus, our results indicate that the formation of DNMT1 adducts is the prevalent mechanism of 5-Aza-dC-induced genome rearrangements, although hypomethylation per se may still contribute. As the therapeutic effects of 5-Aza-dC greatly depend on the presence of DNMT1, the expression level of DNA methyltransferases in tumors may serve as a prognostic factor for the efficacy of 5-Aza-dC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Jones PA, Baylin SB . The epigenomics of cancer. Cell 2007; 128: 683–692.

    Article  CAS  Google Scholar 

  2. Santi DV, Norment A, Garrett CE . Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc Natl Acad Sci USA 1984; 81: 6993–6997.

    Article  CAS  Google Scholar 

  3. Lengauer C, Kinzler KW, Vogelstein B . DNA methylation and genetic instability in colorectal cancer cells. Proc Natl Acad Sci USA 1997; 94: 2545–2550.

    Article  CAS  Google Scholar 

  4. Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R . DNA hypomethylation leads to elevated mutation rates. Nature 1998; 395: 89–93.

    Article  CAS  Google Scholar 

  5. Amacher DE, Turner GN . The mutagenicity of 5-azacytidine and other inhibitors of replicative DNA synthesis in the L5178Y mouse lymphoma cell. Mutat Res 1987; 176: 123–131.

    Article  CAS  Google Scholar 

  6. Hernandez R, Frady A, Zhang XY, Varela M, Ehrlich M . Preferential induction of chromosome 1 multibranched figures and whole-arm deletions in a human pro-B cell line treated with 5-azacytidine or 5-azadeoxycytidine. Cytogenet Cell Genet 1997; 76: 196–201.

    Article  CAS  Google Scholar 

  7. Jackson-Grusby L, Laird PW, Magge SN, Moeller BJ, Jaenisch R . Mutagenicity of 5-aza-2′-deoxycytidine is mediated by the mammalian DNA methyltransferase. Proc Natl Acad Sci USA 1997; 94: 4681–4685.

    Article  CAS  Google Scholar 

  8. Kelecsenyi Z, Spencer DL, Caspary WJ . Molecular analysis of 5-azacytidine-induced variants in mammalian cells. Mutagenesis 2000; 15: 25–31.

    Article  CAS  Google Scholar 

  9. Landolph JR, Jones PA . Mutagenicity of 5-azacytidine and related nucleosides in C3H/10 T 1/2 clone 8 and V79 cells. Cancer Res 1982; 42: 817–823.

    CAS  PubMed  Google Scholar 

  10. Zimmermann FK, Scheel I . Genetic effects of 5-azacytidine in Saccharomyces cerevisiae. Mutat Res 1984; 139: 21–24.

    Article  CAS  Google Scholar 

  11. Garcia AM, Busuttil RA, Rodriguez A, Cabrera C, Lundell M, Dolle ME et al. Detection and analysis of somatic mutations at a lacZ reporter locus in higher organisms: application to Mus musculus and Drosophila melanogaster. Methods Mol Biol 2007; 371: 267–287.

    Article  CAS  Google Scholar 

  12. Boerrigter ME, Dolle ME, Martus HJ, Gossen JA, Vijg J . Plasmid-based transgenic mouse model for studying in vivo mutations. Nature 1995; 377: 657–659.

    Article  CAS  Google Scholar 

  13. Juttermann R, Li E, Jaenisch R . Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci USA 1994; 91: 11797–11801.

    Article  CAS  Google Scholar 

  14. Dolle ME, Vijg J . Genome dynamics in aging mice. Genome Res 2002; 12: 1732–1738.

    Article  CAS  Google Scholar 

  15. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM . DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 1998; 273: 5858–5868.

    Article  CAS  Google Scholar 

  16. Sirbu BM, Couch FB, Feigerle JT, Bhaskara S, Hiebert SW, Cortez D . Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes Dev 2011; 25: 1320–1327.

    Article  CAS  Google Scholar 

  17. Fritz EL, Papavasiliou FN . Cytidine deaminases: AIDing DNA demethylation? Genes Dev 2010; 24: 2107–2114.

    Article  CAS  Google Scholar 

  18. Bhutani N, Burns DM, Blau HM . DNA demethylation dynamics. Cell 2011; 146: 866–872.

    Article  CAS  Google Scholar 

  19. Stavnezer J, Guikema JE, Schrader CE . Mechanism and regulation of class switch recombination. Annu Rev Immunol 2008; 26: 261–292.

    Article  CAS  Google Scholar 

  20. Lin C, Yang L, Tanasa B, Hutt K, Ju BG, Ohgi K et al. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 2009; 139: 1069–1083.

    Article  CAS  Google Scholar 

  21. Masaoka A, Horton JK, Beard WA, Wilson SH . DNA polymerase beta and PARP activities in base excision repair in living cells. DNA Repair (Amst) 2009; 8: 1290–1299.

    Article  CAS  Google Scholar 

  22. Rogstad DK, Herring JL, Theruvathu JA, Burdzy A, Perry CC, Neidigh JW et al. Chemical decomposition of 5-aza-2′-deoxycytidine (Decitabine): kinetic analyses and identification of products by NMR, HPLC, and mass spectrometry. Chem Res Toxicol 2009; 22: 1194–1204.

    Article  CAS  Google Scholar 

  23. Chabot GG, Bouchard J, Momparler RL . Kinetics of deamination of 5-aza-2′-deoxycytidine and cytosine arabinoside by human liver cytidine deaminase and its inhibition by 3-deazauridine, thymidine or uracil arabinoside. Biochem Pharmacol 1983; 32: 1327–1328.

    Article  CAS  Google Scholar 

  24. Sczepanski JT, Wong RS, McKnight JN, Bowman GD, Greenberg MM . Rapid DNA-protein cross-linking and strand scission by an abasic site in a nucleosome core particle. Proc Natl Acad Sci USA 2010; 107: 22475–22480.

    Article  CAS  Google Scholar 

  25. Obeid S, Blatter N, Kranaster R, Schnur A, Diederichs K, Welte W et al. Replication through an abasic DNA lesion: structural basis for adenine selectivity. EMBO J 2010; 29: 1738–1747.

    Article  CAS  Google Scholar 

  26. Kuo HK, Griffith JD, Kreuzer KN . 5-Azacytidine induced methyltransferase-DNA adducts block DNA replication in vivo. Cancer Res 2007; 67: 8248–8254.

    Article  CAS  Google Scholar 

  27. Nakano T, Katafuchi A, Matsubara M, Terato H, Tsuboi T, Masuda T et al. Homologous recombination but not nucleotide excision repair plays a pivotal role in tolerance of DNA-protein cross-links in mammalian cells. J Biol Chem 2009; 284: 27065–27076.

    Article  CAS  Google Scholar 

  28. Palii SS, Van Emburgh BO, Sankpal UT, Brown KD, Robertson KD . DNA methylation inhibitor 5-Aza-2′-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Mol Cell Biol 2008; 28: 752–771.

    Article  CAS  Google Scholar 

  29. Larijani M, Frieder D, Sonbuchner TM, Bransteitter R, Goodman MF, Bouhassira EE et al. Methylation protects cytidines from AID-mediated deamination. Mol Immunol 2005; 42: 599–604.

    Article  CAS  Google Scholar 

  30. Sampath D, Rao VA, Plunkett W . Mechanisms of apoptosis induction by nucleoside analogs. Oncogene 2003; 22: 9063–9074.

    Article  CAS  Google Scholar 

  31. Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG . PARP inhibition: PARP1 and beyond. Nat Rev Cancer 2010; 10: 293–301.

    Article  CAS  Google Scholar 

  32. Sandhu SK, Yap TA, de Bono JS . Poly(ADP-ribose) polymerase inhibitors in cancer treatment: a clinical perspective. Eur J Cancer 2010; 46: 9–20.

    Article  CAS  Google Scholar 

  33. Fisher AE, Hochegger H, Takeda S, Caldecott KW . Poly(ADP-ribose) polymerase 1 accelerates single-strand break repair in concert with poly(ADP-ribose) glycohydrolase. Mol Cell Biol 2007; 27: 5597–5605.

    Article  CAS  Google Scholar 

  34. Vodenicharov MD, Sallmann FR, Satoh MS, Poirier GG . Base excision repair is efficient in cells lacking poly(ADP-ribose) polymerase 1. Nucleic Acids Res 2000; 28: 3887–3896.

    Article  CAS  Google Scholar 

  35. Allinson SL, Dianova II, Dianov GL . Poly(ADP-ribose) polymerase in base excision repair: always engaged, but not essential for DNA damage processing. Acta Biochim Pol 2003; 50: 169–179.

    CAS  PubMed  Google Scholar 

  36. Ferguson AT, Vertino PM, Spitzner JR, Baylin SB, Muller MT, Davidson NE . Role of estrogen receptor gene demethylation and DNA methyltransferase. DNA adduct formation in 5-aza-2′deoxycytidine-induced cytotoxicity in human breast cancer cells. J Biol Chem 1997; 272: 32260–32266.

    Article  CAS  Google Scholar 

  37. Hoglund A, Nilsson LM, Forshell LP, Maclean KH, Nilsson JA . Myc sensitizes p53-deficient cancer cells to the DNA-damaging effects of the DNA methyltransferase inhibitor decitabine. Blood 2009; 113: 4281–4288.

    Article  Google Scholar 

  38. Daskalakis M, Nguyen TT, Nguyen C, Guldberg P, Kohler G, Wijermans P et al. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2′-deoxycytidine (decitabine) treatment. Blood 2002; 100: 2957–2964.

    Article  CAS  Google Scholar 

  39. Fandy TE . Development of DNA methyltransferase inhibitors for the treatment of neoplastic diseases. Curr Med Chem 2009; 16: 2075–2085.

    Article  CAS  Google Scholar 

  40. Karpf AR, Moore BC, Ririe TO, Jones DA . Activation of the p53 DNA damage response pathway after inhibition of DNA methyltransferase by 5-aza-2′-deoxycytidine. Mol Pharmacol 2001; 59: 751–757.

    Article  CAS  Google Scholar 

  41. Langer F, Dingemann J, Kreipe H, Lehmann U . Up-regulation of DNA methyltransferases DNMT1, 3A, and 3B in myelodysplastic syndrome. Leuk Res 2005; 29: 325–329.

    Article  Google Scholar 

  42. Coolen MW, Statham AL, Gardiner-Garden M, Clark SJ . Genomic profiling of CpG methylation and allelic specificity using quantitative high-throughput mass spectrometry: critical evaluation and improvements. Nucleic Acids Res 2007; 35: e119.

    Article  Google Scholar 

  43. Ehrich M, Nelson MR, Stanssens P, Zabeau M, Liloglou T, Xinarianos G et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci USA 2005; 102: 15785–15790.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grant P01 AG017242 to JV and YS; R01 AG024391 to YS. CT is a recipient of Ellison/AFAR postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Y Maslov, Y Suh or J Vijg.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maslov, A., Lee, M., Gundry, M. et al. 5-Aza-2′-deoxycytidine-induced genome rearrangements are mediated by DNMT1. Oncogene 31, 5172–5179 (2012). https://doi.org/10.1038/onc.2012.9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.9

Keywords

This article is cited by

Search

Quick links