Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Protein N-terminal acetyltransferases in cancer

Abstract

The human N-terminal acetyltransferases (NATs) catalyze the transfer of acetyl moieties to the N-termini of 80–90% of all human proteins. Six NAT types are present in humans, NatA–NatF, each is composed of specific subunits and each acetylates a set of substrates defined by the N-terminal amino-acid sequence. NATs have been suggested to act as oncoproteins as well as tumor suppressors in human cancers, and NAT expression may be both elevated and decreased in cancer versus non-cancer tissues. Manipulation of NATs in cancer cells induced cell-cycle arrest, apoptosis or autophagy, implying that these enzymes target a variety of pathways. Of particular interest is hNaa10p (human ARD1), the catalytic subunit of the NatA complex, which was coupled to a number of signaling molecules including hypoxia inducible factor-1α, β-catenin/cyclin D1, TSC2/mammalian target of rapamycin, myosin light chain kinase , DNA methyltransferase1/E-cadherin and p21-activated kinase-interacting exchange factors (PIX)/Cdc42/Rac1. The variety of mechanistic links where hNaa10p acts as a NAT, a lysine acetyltransferase or displaying a non-catalytic role, provide insights to how hNaa10p may act as both a tumor suppressor and oncoprotein.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3

References

  1. Arnesen T, Van Damme P, Polevoda B, Helsens K, Evjenth R, Colaert N et al. Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proc Natl Acad Sci USA 2009; 106: 8157–8162.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. Van Damme P, Hole K, Pimenta-Marques A, Helsens K, Vandekerckhove J, Martinho RG et al. NatF contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation. PLoS Genet 2011; 7: e1002169.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Brown JL, Roberts WK . Evidence that approximately eighty per cent of the soluble proteins from Ehrlich ascites cells are Nalpha-acetylated. J Biol Chem 1976; 251: 1009–1014.

    CAS  PubMed  Article  Google Scholar 

  4. Polevoda B, Sherman F . N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins. J Mol Biol 2003; 325: 595–622.

    CAS  PubMed  Article  Google Scholar 

  5. Hershko A, Heller H, Eytan E, Kaklij G, Rose IA . Role of the alpha-amino group of protein in ubiquitin-mediated protein breakdown. Proc Natl Acad Sci USA 1984; 81: 7021–7025.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. Hwang CS, Shemorry A, Varshavsky A . N-terminal acetylation of cellular proteins creates specific degradation signals. Science 2010; 327: 973–977.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Varshavsky A . The N-end rule pathway and regulation by proteolysis. Protein Sci 2011s; 20: 1298–1345.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Scott DC, Monda JK, Bennett EJ, Harper JW, Schulman BA . N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex. Science 2011; 334: 674–678.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Polevoda B, Cardillo TS, Doyle TC, Bedi GS, Sherman F . Nat3p and Mdm20p are required for function of yeast NatB Nalpha-terminal acetyltransferase and of actin and tropomyosin. J Biol Chem 2003; 278: 30686–30697.

    CAS  PubMed  Article  Google Scholar 

  10. Caesar R, Blomberg A . The stress-induced Tfs1p requires NatB-mediated acetylation to inhibit carboxypeptidase Y and to regulate the protein kinase A pathway. J Biol Chem 2004; 279: 38532–38543.

    CAS  PubMed  Article  Google Scholar 

  11. Coulton AT, East DA, Galinska-Rakoczy A, Lehman W, Mulvihill DP . The recruitment of acetylated and unacetylated tropomyosin to distinct actin polymers permits the discrete regulation of specific myosins in fission yeast. J Cell Sci 2010; 123 (Part 19): 3235–3243.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Hofmann I, Munro S . An N-terminally acetylated Arf-like GTPase is localised to lysosomes and affects their motility. J Cell Sci 2006; 119 (Part 8): 1494–1503.

    CAS  PubMed  Article  Google Scholar 

  13. Setty SR, Strochlic TI, Tong AH, Boone C, Burd CG . Golgi targeting of ARF-like GTPase Arl3p requires its Nalpha-acetylation and the integral membrane protein Sys1p. Nat Cell Biol 2004; 6: 414–419.

    CAS  PubMed  Article  Google Scholar 

  14. Behnia R, Panic B, Whyte JR, Munro S . Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nat Cell Biol 2004; 6: 405–413.

    CAS  PubMed  Article  Google Scholar 

  15. Starheim KK, Gromyko D, Evjenth R, Ryningen A, Varhaug JE, Lillehaug JR et al. Knockdown of human N alpha-terminal acetyltransferase complex C leads to p53-dependent apoptosis and aberrant human Arl8b localization. Mol Cell Biol 2009; 29: 3569–3581.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Behnia R, Barr FA, Flanagan JJ, Barlowe C, Munro S . The yeast orthologue of GRASP65 forms a complex with a coiled-coil protein that contributes to ER to Golgi traffic. J Cell Biol 2007; 176: 255–261.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Murthi A, Hopper AK . Genome-wide screen for inner nuclear membrane protein targeting in Saccharomyces cerevisiae: roles for N-acetylation and an integral membrane protein. Genetics 2005; 170: 1553–1560.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Forte GM, Pool MR, Stirling CJ . N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum. PLoS Biol 2011; 9: e1001073.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Arnesen T . Towards a functional understanding of protein N-terminal acetylation. PLoS Biol 2011; 9: e1001074.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Driessen HP, de Jong WW, Tesser GI, Bloemendal H . The mechanism of N-terminal acetylation of proteins. CRC Crit Rev Biochem 1985; 18: 281–325.

    CAS  PubMed  Article  Google Scholar 

  21. Polevoda B, Brown S, Cardillo TS, Rigby S, Sherman F . Yeast N(alpha)-terminal acetyltransferases are associated with ribosomes. J Cell Biochem 2008; 103: 492–508.

    CAS  PubMed  Article  Google Scholar 

  22. Gautschi M, Just S, Mun A, Ross S, Rucknagel P, Dubaquie Y et al. The yeast N(alpha)-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides. Mol Cell Biol 2003; 23: 7403–7414.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Helsens K, Van Damme P, Degroeve S, Martens L, Arnesen T, Vandekerckhove J et al. Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation. J Proteome Res 2011; 10: 3578–3589.

    CAS  PubMed  Article  Google Scholar 

  24. Helbig AO, Rosati S, Pijnappel PW, van Breukelen B, Timmers MH, Mohammed S et al. Perturbation of the yeast N-acetyltransferase NatB induces elevation of protein phosphorylation levels. BMC Genomics 2010; 11: 685.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Polevoda B, Norbeck J, Takakura H, Blomberg A, Sherman F . Identification and specificities of N-terminal acetyltransferases from Saccharomyces cerevisiae. EMBO J 1999; 18: 6155–6168.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Polevoda B, Arnesen T, Sherman F . A synopsis of eukaryotic Nalpha-terminal acetyltransferases: nomenclature, subunits and substrates. BMC Proc 2009; 3 (Suppl 6): S2.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. Evjenth R, Hole K, Karlsen OA, Ziegler M, Arnesen T, Lillehaug JR . Human Naa50p (Nat5/San) displays both protein N alpha- and N epsilon-acetyltransferase activity. J Biol Chem 2009; 284: 31122–31129.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Starheim KK, Arnesen T, Gromyko D, Ryningen A, Varhaug JE, Lillehaug JR . Identification of the human N(alpha)-acetyltransferase complex B (hNatB): a complex important for cell-cycle progression. Biochem J 2008; 415: 325–331.

    CAS  PubMed  Article  Google Scholar 

  29. Arnesen T, Anderson D, Baldersheim C, Lanotte M, Varhaug JE, Lillehaug JR . Identification and characterization of the human ARD1-NATH protein acetyltransferase complex. Biochem J 2005; 386 (Part 3): 433–443.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Hole K, Van Damme P, Dalva M, Aksnes H, Glomnes N, Varhaug JE et al. The human N-alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4. PLoS One 2011; 6: e24713.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Arnesen T, Starheim KK, Van Damme P, Evjenth R, Dinh H, Betts MJ et al. The chaperone-like protein HYPK acts together with NatA in cotranslational N-terminal acetylation and prevention of Huntingtin aggregation. Mol Cell Biol 2010; 30: 1898–1909.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Arnesen T, Anderson D, Torsvik J, Halseth HB, Varhaug JE, Lillehaug JR . Cloning and characterization of hNAT5/hSAN: an evolutionarily conserved component of the NatA protein N-alpha-acetyltransferase complex. Gene 2006; 371: 291–295.

    CAS  PubMed  Article  Google Scholar 

  33. Van Damme P, Evjenth R, Foyn H, Demeyer K, De Bock PJ, Lillehaug JR et al. Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N{alpha}-acetyltransferases and Point to hNaa10p as the post-translational actin N{alpha}-acetyltransferase. Mol Cell Proteomics 2011; 10: M110 004580.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. Mullen JR, Kayne PS, Moerschell RP, Tsunasawa S, Gribskov M, Colavito-Shepanski M et al. Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast. EMBO J 1989; 8: 2067–2075.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Starheim KK, Gromyko D, Velde R, Varhaug JE, Arnesen T . Composition and biological significance of the human Nalpha-terminal acetyltransferases. BMC Proc 2009; 3 (Suppl 6): S3.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. Song OK, Wang X, Waterborg JH, Sternglanz R . An Nalpha-acetyltransferase responsible for acetylation of the N-terminal residues of histones H4 and H2A. J Biol Chem 2003; 278: 38109–38112.

    CAS  PubMed  Article  Google Scholar 

  37. Marmorstein R . Biochemical and structural characterization of recombinant histone acetyltransferase proteins. Methods Enzymol 2004; 376: 106–119.

    CAS  PubMed  Article  Google Scholar 

  38. Rope AF, Wang K, Evjenth R, Xing J, Johnston JJ, Swensen JJ et al. Using VAAST to identify an X-linked disorder resulting in lethality in male infants due to N-terminal acetyltransferase deficiency. Am J Hum Genet 2011; 89: 28–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Lee CF, Ou DS, Lee SB, Chang LH, Lin RK, Li YS et al. hNaa10p contributes to tumorigenesis by facilitating DNMT1-mediated tumor suppressor gene silencing. J Clin Invest 2010; 120: 2920–2930.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Ren T, Jiang B, Jin G, Li J, Dong B, Zhang J et al. Generation of novel monoclonal antibodies and their application for detecting ARD1 expression in colorectal cancer. Cancer Lett 2008; 264: 83–92.

    CAS  PubMed  Article  Google Scholar 

  41. Midorikawa Y, Tsutsumi S, Taniguchi H, Ishii M, Kobune Y, Kodama T et al. Identification of genes associated with dedifferentiation of hepatocellular carcinoma with expression profiling analysis. Jpn J Cancer Res 2002; 93: 636–643.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Yu M, Gong J, Ma M, Yang H, Lai J, Wu H et al. Immunohistochemical analysis of human arrest-defective-1 expressed in cancers in vivo. Oncol Rep 2009; 21: 909–915.

    CAS  PubMed  Google Scholar 

  43. Yu M, Ma M, Huang C, Yang H, Lai J, Yan S et al. Correlation of expression of human arrest-defective-1 (hARD1) protein with breast cancer. Cancer Invest 2009; 27: 978–983.

    CAS  PubMed  Article  Google Scholar 

  44. Fisher TS, Etages SD, Hayes L, Crimin K, Li B . Analysis of ARD1 function in hypoxia response using retroviral RNA interference. J Biol Chem 2005; 280: 17749–17757.

    CAS  PubMed  Article  Google Scholar 

  45. Funderburk SF, Wang QJ, Yue Z . The Beclin 1-VPS34 complex—at the crossroads of autophagy and beyond. Trends Cell Biol 2010; 20: 355–362.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Arnesen T, Gromyko D, Pendino F, Ryningen A, Varhaug JE, Lillehaug JR . Induction of apoptosis in human cells by RNAi-mediated knockdown of hARD1 and NATH, components of the protein N-alpha-acetyltransferase complex. Oncogene 2006; 25: 4350–4360.

    CAS  PubMed  Article  Google Scholar 

  47. Gromyko D, Arnesen T, Ryningen A, Varhaug JE, Lillehaug JR . Depletion of the human N(alpha)-terminal acetyltransferase A (hNatA) induces p53-dependent apoptosis and p53-independent growth inhibition. Int J Cancer 2010; 127: 2777–2789.

    CAS  PubMed  Article  Google Scholar 

  48. Lim JH, Park JW, Chun YS . Human arrest defective 1 acetylates and activates beta-catenin, promoting lung cancer cell proliferation. Cancer Res 2006; 66: 10677–10682.

    CAS  PubMed  Article  Google Scholar 

  49. Seo JH, Cha JH, Park JH, Jeong CH, Park ZY, Lee HS et al. Arrest defective 1 autoacetylation is a critical step in its ability to stimulate cancer cell proliferation. Cancer Res 2010; 70: 4422–4432.

    CAS  PubMed  Article  Google Scholar 

  50. Alao JP . The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol Cancer 2007; 6: 24.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. Motokura T, Arnold A . Cyclin D and oncogenesis. Curr Opin Genet Dev 1993; 3: 5–10.

    CAS  PubMed  Article  Google Scholar 

  52. Jones PA, Baylin SB . The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002; 3: 415–428.

    CAS  PubMed  Article  Google Scholar 

  53. Robertson KD, Wolffe AP . DNA methylation in health and disease. Nat Rev Genet 2000; 1: 11–19.

    CAS  PubMed  Article  Google Scholar 

  54. Kuo HP, Lee DF, Chen CT, Liu M, Chou CK, Lee HJ et al. ARD1 stabilization of TSC2 suppresses tumorigenesis through the mTOR signaling pathway. Sci Signal 2010; 3: ra9.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. Hua KT, Tan CT, Johansson G, Lee JM, Yang PW, Lu HY et al. N-alpha-acetyltransferase 10 protein suppresses cancer cell metastasis by binding PIX proteins and inhibiting Cdc42/Rac1 activity. Cancer Cell 2011; 19: 218–231.

    CAS  PubMed  Article  Google Scholar 

  56. Shin DH, Chun YS, Lee KH, Shin HW, Park JW . Arrest defective-1 controls tumor cell behavior by acetylating myosin light chain kinase. PLoS One 2009; 4: e7451.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. Klionsky DJ, Emr SD . Autophagy as a regulated pathway of cellular degradation. Science 2000; 290: 1717–1721.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Yi CH, Sogah DK, Boyce M, Degterev A, Christofferson DE, Yuan J . A genome-wide RNAi screen reveals multiple regulators of caspase activation. J Cell Biol 2007; 179: 619–626.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. Yi CH, Pan H, Seebacher J, Jang IH, Hyberts SG, Heffron GJ et al. Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival. Cell 2011; 146: 607–620.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Hsu PP, Sabatini DM . Cancer cell metabolism: Warburg and beyond. Cell 2008; 134: 703–707.

    CAS  Article  PubMed  Google Scholar 

  61. Vander Heiden MG, Cantley LC, Thompson CB . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. Vaupel P . The role of hypoxia-induced factors in tumor progression. Oncologist 2004; 9 (Suppl 5): 10–17.

    CAS  PubMed  Article  Google Scholar 

  63. Bacon AL, Harris AL . Hypoxia-inducible factors and hypoxic cell death in tumour physiology. Ann Med 2004; 36: 530–539.

    CAS  PubMed  Article  Google Scholar 

  64. Hopfl G, Ogunshola O, Gassmann M . HIFs and tumors—causes and consequences. Am J Physiol Regul Integr Comp Physiol 2004; 286: R608–R623.

    PubMed  Article  Google Scholar 

  65. Zhou J, Schmid T, Schnitzer S, Brune B . Tumor hypoxia and cancer progression. Cancer Lett 2006; 237: 10–21.

    CAS  PubMed  Article  Google Scholar 

  66. Semenza GL . Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology 2004; 19: 176–182.

    CAS  PubMed  Article  Google Scholar 

  67. Poellinger L, Johnson RS . HIF-1 and hypoxic response: the plot thickens. Curr Opin Genet Dev 2004; 14: 81–85.

    CAS  PubMed  Article  Google Scholar 

  68. Wenger RH . Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J 2002; 16: 1151–1162.

    CAS  Article  PubMed  Google Scholar 

  69. Schofield CJ, Ratcliffe PJ . Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 2004; 5: 343–354.

    CAS  PubMed  Article  Google Scholar 

  70. Semenza GL . Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003; 3: 721–732.

    CAS  PubMed  Article  Google Scholar 

  71. Lim JH, Chun YS, Park JW . Hypoxia-inducible factor-1alpha obstructs a Wnt signaling pathway by inhibiting the hARD1-mediated activation of beta-catenin. Cancer Res 2008; 68: 5177–5184.

    CAS  PubMed  Article  Google Scholar 

  72. Arnesen T, Kong X, Evjenth R, Gromyko D, Varhaug JE, Lin Z et al. Interaction between HIF-1 alpha (ODD) and hARD1 does not induce acetylation and destabilization of HIF-1 alpha. FEBS Lett 2005; 579: 6428–6432.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Murray-Rust TA, Oldham NJ, Hewitson KS, Schofield CJ . Purified recombinant hARD1 does not catalyse acetylation of Lys532 of HIF-1alpha fragments in vitro. FEBS Lett 2006; 580: 1911–1918.

    CAS  PubMed  Article  Google Scholar 

  74. Bilton R, Mazure N, Trottier E, Hattab M, Dery MA, Richard DE et al. Arrest-defective-1 protein, an acetyltransferase, does not alter stability of hypoxia-inducible factor (HIF)-1alpha and is not induced by hypoxia or HIF. J Biol Chem 2005; 280: 31132–31140.

    CAS  PubMed  Article  Google Scholar 

  75. Arnesen T, Gromyko D, Horvli O, Fluge O, Lillehaug J, Varhaug JE . Expression of N-acetyl transferase human and human Arrest defective 1 proteins in thyroid neoplasms. Thyroid 2005; 15: 1131–1136.

    CAS  PubMed  Article  Google Scholar 

  76. Fluge O, Bruland O, Akslen LA, Varhaug JE, Lillehaug JR . NATH, a novel gene overexpressed in papillary thyroid carcinomas. Oncogene 2002; 21: 5056–5068.

    CAS  PubMed  Article  Google Scholar 

  77. Martin DT, Gendron RL, Jarzembowski JA, Perry A, Collins MH, Pushpanathan C et al. Tubedown expression correlates with the differentiation status and aggressiveness of neuroblastic tumors. Clin Cancer Res 2007; 13: 1480–1487.

    CAS  PubMed  Article  Google Scholar 

  78. Gendron RL, Adams LC, Paradis H . Tubedown-1, a novel acetyltransferase associated with blood vessel development. Dev Dyn 2000; 218: 300–315.

    CAS  PubMed  Article  Google Scholar 

  79. Arnesen T, Betts MJ, Pendino F, Liberles DA, Anderson D, Caro J et al. Characterization of hARD2, a processed hARD1 gene duplicate, encoding a human protein N-alpha-acetyltransferase. BMC Biochem 2006; 7: 13.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  80. Sugiura N, Adams SM, Corriveau RA . An evolutionarily conserved N-terminal acetyltransferase complex associated with neuronal development. J Biol Chem 2003; 278: 40113–40120.

    CAS  PubMed  Article  Google Scholar 

  81. Line A, Stengrevics A, Slucka Z, Li G, Jankevics E, Rees RC . Serological identification and expression analysis of gastric cancer-associated genes. Brit J Cancer 2002; 86: 1824–1830.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. Huang GL, Li BK, Zhang MY, Zhang HZ, Wei RR, Yuan YF et al. LOH analysis of genes around D4S2964 identifies ARD1B as a prognostic predictor of hepatocellular carcinoma. World J Gastroenterol 2010; 16: 2046–2054.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Ametzazurra A, Larrea E, Civeira MP, Prieto J, Aldabe R . Implication of human N-alpha-acetyltransferase 5 in cellular proliferation and carcinogenesis. Oncogene 2008; 27: 7296–7306.

    CAS  PubMed  Article  Google Scholar 

  84. Liu Z, Liu Y, Wang H, Ge X, Jin Q, Ding G et al. Patt1, a novel protein acetyltransferase that is highly expressed in liver and downregulated in hepatocellular carcinoma, enhances apoptosis of hepatoma cells. Int J Biochem Cell Biol 2009; 41: 2528–2537.

    CAS  PubMed  Article  Google Scholar 

  85. Hou F, Chu CW, Kong X, Yokomori K, Zou H . The acetyltransferase activity of San stabilizes the mitotic cohesin at the centromeres in a shugoshin-independent manner. J Cell Biol 2007; 177: 587–597.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Williams BC, Garrett-Engele CM, Li Z, Williams EV, Rosenman ED, Goldberg ML . Two putative acetyltransferases, san and deco, are required for establishing sister chromatid cohesion in Drosophila. Curr Biol 2003; 13: 2025–2036.

    CAS  PubMed  Article  Google Scholar 

  87. Pimenta-Marques A, Tostoes R, Marty T, Barbosa V, Lehmann R, Martinho RG . Differential requirements of a mitotic acetyltransferase in somatic and germ line cells. Dev Biol 2008; 323: 197–206.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Jallepalli PV, Lengauer C . Chromosome segregation and cancer: cutting through the mystery. Nat Rev Cancer 2001; 1: 109–117.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Arnesen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kalvik, T., Arnesen, T. Protein N-terminal acetyltransferases in cancer. Oncogene 32, 269–276 (2013). https://doi.org/10.1038/onc.2012.82

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.82

Keywords

  • N-terminal acetylation
  • NAT
  • Naa10p
  • oncoprotein
  • tumor suppressor

Further reading

Search

Quick links