Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

New frontiers in promoting tumour cell death: targeting apoptosis, necroptosis and autophagy

Abstract

Cancer is a multifaceted disease comprising a combination of genetic, metabolic and signalling aberrations, which severely disrupt the normal homeostasis of cell growth and death. Many oncogenic events while promoting tumour development also increase the sensitivity of cells to cell death stimuli including chemotherapeutic drugs. As a result, tumour cells often acquire the ability to evade death by inactivating cell death pathways that normally function to eliminate damaged and harmful cells. The impairment of cell death function is also often the reason for the development of chemotherapeutic resistance encountered during treatment. It is therefore necessary to achieve a comprehensive understanding of existing cell death pathways and the relevant regulatory components involved, with the intention of identifying new strategies to kill cancer cells. This review provides an insightful overview of the common forms of cell death signalling pathways, the interactions between these pathways and the ways in which these pathways are deregulated in cancer. We also discuss the emerging therapies targeted at activating or restoring cell death pathways to induce tumour cell death, which are currently being tested in clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Amaravadi RK, Thompson CB . (2007). The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin Cancer Res 13: 7271–7279.

    CAS  PubMed  Google Scholar 

  • Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI et al. (2007). Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117: 326–336.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Artal-Sanz M, Samara C, Syntichaki P, Tavernarakis N . (2006). Lysosomal biogenesis and function is critical for necrotic cell death in Caenorhabditis elegans. J Cell Biol 173: 231–239.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashkenazi A, Dixit VM . (1998). Death receptors: signaling and modulation. Science 281: 1305–1308.

    Article  CAS  PubMed  Google Scholar 

  • Azad MB, Chen Y, Henson ES, Cizeau J, McMillan-Ward E, Israels SJ et al. (2008). Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy 4: 195–204.

    CAS  PubMed  Google Scholar 

  • Bellodi C, Lidonnici MR, Hamilton A, Helgason GV, Soliera AR, Ronchetti M et al. (2009). Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest 119: 1109–1123.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J et al. (2009). Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3 L via their BH3 domains. Mol Cell Biol 29: 2570–2581.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berry DL, Baehrecke EH . (2007). Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131: 1137–1148.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J et al. (2008). cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30: 689–700.

    Article  CAS  PubMed  Google Scholar 

  • Bianchi K, Meier P . (2009). A tangled web of ubiquitin chains: breaking news in TNF-R1 signaling. Mol Cell 36: 736–742.

    CAS  PubMed  Google Scholar 

  • Boya P, Kroemer G . (2008). Lysosomal membrane permeabilization in cell death. Oncogene 27: 6434–6451.

    CAS  PubMed  Google Scholar 

  • Briceno E, Calderon A, Sotelo J . (2007). Institutional experience with chloroquine as an adjuvant to the therapy for glioblastoma multiforme. Surg Neurol 67: 388–391.

    PubMed  Google Scholar 

  • Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P et al. (2002). Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8: 282–288.

    CAS  PubMed  Google Scholar 

  • Bykov VJ, Zache N, Stridh H, Westman J, Bergman J, Selivanova G et al. (2005). PRIMA-1(MET) synergizes with cisplatin to induce tumor cell apoptosis. Oncogene 24: 3484–3491.

    CAS  PubMed  Google Scholar 

  • Cain K, Bratton SB, Langlais C, Walker G, Brown DG, Sun XM et al. (2000). Apaf-1 oligomerizes into biologically active approximately 700-kDa and inactive approximately 1.4-MDa apoptosome complexes. J Biol Chem 275: 6067–6070.

    CAS  PubMed  Google Scholar 

  • Chan DA, Giaccia AJ . (2011). Harnessing synthetic lethal interactions in anticancer drug discovery. Nat Rev Drug Discov 10: 351–364.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan FK, Shisler J, Bixby JG, Felices M, Zheng L, Appel M et al. (2003). A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem 278: 51613–51621.

    CAS  PubMed  Google Scholar 

  • Chautan M, Chazal G, Cecconi F, Gruss P, Golstein P . (1999). Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr Biol 9: 967–970.

    CAS  PubMed  Google Scholar 

  • Chen DJ, Huerta S . (2009). Smac mimetics as new cancer therapeutics. Anticancer Drugs 20: 646–658.

    CAS  PubMed  Google Scholar 

  • Ch'en IL, Tsau JS, Molkentin JD, Komatsu M, Hedrick SM . (2011). Mechanisms of necroptosis in T cells. J Exp Med 208: 633–641.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung WC, Kim JS, Linden M, Peng L, Van Ness B, Polakiewicz RD et al. (2004). Novel targeted deregulation of c-Myc cooperates with Bcl-X(L) to cause plasma cell neoplasms in mice. J Clin Invest 113: 1763–1773.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR . (2005). PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309: 1732–1735.

    CAS  PubMed  Google Scholar 

  • Chipuk JE, Green DR . (2008). How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18: 157–164.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho DH, Jo YK, Hwang JJ, Lee YM, Roh SA, Kim JC . (2009a). Caspase-mediated cleavage of ATG6/Beclin-1 links apoptosis to autophagy in HeLa cells. Cancer Lett 274: 95–100.

    CAS  PubMed  Google Scholar 

  • Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M et al. (2009b). Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137: 1112–1123.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ciechomska IA, Goemans GC, Skepper JN, Tolkovsky AM . (2009). Bcl-2 complexed with Beclin-1 maintains full anti-apoptotic function. Oncogene 28: 2128–2141.

    CAS  PubMed  Google Scholar 

  • Cragg MS, Harris C, Strasser A, Scott CL . (2009). Unleashing the power of inhibitors of oncogenic kinases through BH3 mimetics. Nat Rev Cancer 9: 321–326.

    CAS  PubMed  Google Scholar 

  • Cragg MS, Jansen ES, Cook M, Harris C, Strasser A, Scott CL . (2008). Treatment of B-RAF mutant human tumor cells with a MEK inhibitor requires Bim and is enhanced by a BH3 mimetic. J Clin Invest 118: 3651–3659.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cragg MS, Kuroda J, Puthalakath H, Huang DC, Strasser A . (2007). Gefitinib-induced killing of NSCLC cell lines expressing mutant EGFR requires BIM and can be enhanced by BH3 mimetics. PLoS Med 4: 1681–1689; discussion 1690.

    CAS  PubMed  Google Scholar 

  • Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR et al. (2006). DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126: 121–134.

    CAS  PubMed  Google Scholar 

  • Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G et al. (2006). Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10: 51–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Degterev A, Boyce M, Yuan J . (2003). A decade of caspases. Oncogene 22: 8543–8567.

    CAS  PubMed  Google Scholar 

  • Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N et al. (2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1: 112–119.

    CAS  PubMed  Google Scholar 

  • Delavallee L, Cabon L, Galan-Malo P, Lorenzo HK, Susin SA . (2011). AIF-mediated caspase-independent necroptosis: a new chance for targeted therapeutics. IUBMB Life 63: 221–232.

    CAS  PubMed  Google Scholar 

  • Deter RL, Baudhuin P, De Duve C . (1967). Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J Cell Biol 35: C11–C16.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deveraux QL, Takahashi R, Salvesen GS, Reed JC . (1997). X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388: 300–304.

    CAS  PubMed  Google Scholar 

  • Devin A, Cook A, Lin Y, Rodriguez Y, Kelliher M, Liu Z . (2000). The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity 12: 419–429.

    CAS  PubMed  Google Scholar 

  • Djavaheri-Mergny M, Maiuri MC, Kroemer G . (2010). Cross talk between apoptosis and autophagy by caspase-mediated cleavage of Beclin 1. Oncogene 29: 1717–1719.

    CAS  PubMed  Google Scholar 

  • Du C, Fang M, Li Y, Li L, Wang X . (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102: 33–42.

    CAS  PubMed  Google Scholar 

  • Eguchi Y, Shimizu S, Tsujimoto Y . (1997). Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57: 1835–1840.

    CAS  PubMed  Google Scholar 

  • Elmore S . (2007). Apoptosis: a review of programmed cell death. Toxicol Pathol 35: 495–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fadok VA, Bratton DL, Frasch SC, Warner ML, Henson PM . (1998). The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ 5: 551–562.

    CAS  PubMed  Google Scholar 

  • Fanidi A, Harrington EA, Evan GI . (1992). Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature 359: 554–556.

    CAS  PubMed  Google Scholar 

  • Fecker LF, Geilen CC, Tchernev G, Trefzer U, Assaf C, Kurbanov BM et al. (2006). Loss of proapoptotic Bcl-2-related multidomain proteins in primary melanomas is associated with poor prognosis. J Invest Dermatol 126: 1366–1371.

    CAS  PubMed  Google Scholar 

  • Feoktistova M, Geserick P, Kellert B, Dimitrova DP, Langlais C, Hupe M et al. (2011). cIAPs block ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 43: 449–463.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R et al. (2007). Ambra1 regulates autophagy and development of the nervous system. Nature 447: 1121–1125.

    CAS  PubMed  Google Scholar 

  • Fulda S, Debatin KM . (2006). Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25: 4798–4811.

    CAS  PubMed  Google Scholar 

  • Fulda S, Meyer E, Debatin KM . (2002). Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene 21: 2283–2294.

    CAS  PubMed  Google Scholar 

  • Galluzzi L, Aaronson SA, Abrams J, Alnemri ES, Andrews DW, Baehrecke EH et al. (2009). Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ 16: 1093–1107.

    CAS  PubMed  Google Scholar 

  • Gdynia G, Grund K, Eckert A, Bock BC, Funke B, Macher-Goeppinger S et al. (2007). Basal caspase activity promotes migration and invasiveness in glioblastoma cells. Mol Cancer Res 5: 1232–1240.

    CAS  PubMed  Google Scholar 

  • Ghavami S, Hashemi M, Ande SR, Yeganeh B, Xiao W, Eshraghi M et al. (2009). Apoptosis and cancer: mutations within caspase genes. J Med Genet 46: 497–510.

    CAS  PubMed  Google Scholar 

  • Green DR, Evan GI . (2002). A matter of life and death. Cancer Cell 1: 19–30.

    CAS  PubMed  Google Scholar 

  • Greenhalgh DG . (1998). The role of apoptosis in wound healing. Int J Biochem Cell Biol 30: 1019–1030.

    CAS  PubMed  Google Scholar 

  • Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G et al. (2011). Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25: 460–470.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gyrd-Hansen M, Meier P . (2010). IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer 10: 561–574.

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    CAS  PubMed  Google Scholar 

  • He S, Wang L, Miao L, Wang T, Du F, Zhao L et al. (2009). Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137: 1100–1111.

    CAS  PubMed  Google Scholar 

  • Healy E, Dempsey M, Lally C, Ryan MP . (1998). Apoptosis and necrosis: mechanisms of cell death induced by cyclosporine A in a renal proximal tubular cell line. Kidney Int 54: 1955–1966.

    CAS  PubMed  Google Scholar 

  • Helgason GV, Karvela M, Holyoake TL . (2011). Kill one bird with two stones: potential efficacy of BCR-ABL and autophagy inhibition in CML. Blood 118: 2035–2043.

    CAS  PubMed  Google Scholar 

  • Hengartner MO . (2000). The biochemistry of apoptosis. Nature 407: 770–776.

    CAS  PubMed  Google Scholar 

  • Hetschko H, Voss V, Seifert V, Prehn JH, Kogel D . (2008). Upregulation of DR5 by proteasome inhibitors potently sensitizes glioma cells to TRAIL-induced apoptosis. FEBS J 275: 1925–1936.

    CAS  PubMed  Google Scholar 

  • Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ . (1990). Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348: 334–336.

    CAS  PubMed  Google Scholar 

  • Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S et al. (2000). Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1: 489–495.

    CAS  PubMed  Google Scholar 

  • Hou W, Han J, Lu C, Goldstein LA, Rabinowich H . (2010). Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy 6: 891–900.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter AM, LaCasse EC, Korneluk RG . (2007). The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis 12: 1543–1568.

    CAS  PubMed  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T et al. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19: 5720–5728.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, Hakem R et al. (2011). RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471: 368–372.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang MR, Kim MS, Oh JE, Kim YR, Song SY, Kim SS et al. (2009). Frameshift mutations of autophagy-related genes ATG2B, ATG5, ATG9B and ATG12 in gastric and colorectal cancers with microsatellite instability. J Pathol 217: 702–706.

    CAS  PubMed  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR . (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, Bruun JA et al. (2009). A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33: 505–516.

    CAS  PubMed  Google Scholar 

  • Koneri K, Goi T, Hirono Y, Katayama K, Yamaguchi A . (2007). Beclin 1 gene inhibits tumor growth in colon cancer cell lines. Anticancer Res 27: 1453–1457.

    CAS  PubMed  Google Scholar 

  • Koschny R, Holland H, Sykora J, Haas TL, Sprick MR, Ganten TM et al. (2007). Bortezomib sensitizes primary human astrocytoma cells of WHO grades I to IV for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Clin Cancer Res 13: 3403–3412.

    CAS  PubMed  Google Scholar 

  • Kosta A, Roisin-Bouffay C, Luciani MF, Otto GP, Kessin RH, Golstein P . (2004). Autophagy gene disruption reveals a non-vacuolar cell death pathway in Dictyostelium. J Biol Chem 279: 48404–48409.

    CAS  PubMed  Google Scholar 

  • Kuroda J, Puthalakath H, Cragg MS, Kelly PN, Bouillet P, Huang DC et al. (2006). Bim and Bad mediate imatinib-induced killing of Bcr/Abl+ leukemic cells, and resistance due to their loss is overcome by a BH3 mimetic. Proc Natl Acad Sci USA 103: 14907–14912.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lavrik I, Golks A, Krammer PH . (2005). Death receptor signaling. J Cell Sci 118: 265–267.

    CAS  PubMed  Google Scholar 

  • Lee JT, Innes Jr DJ, Williams ME . (1989). Sequential bcl-2 and c-myc oncogene rearrangements associated with the clinical transformation of non-Hodgkin's lymphoma. J Clin Invest 84: 1454–1459.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P . (1997). Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 185: 1481–1486.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leontieva OV, Gudkov AV, Blagosklonny MV . (2010). Weak p53 permits senescence during cell cycle arrest. Cell Cycle 9: 4323–4327.

    CAS  PubMed  Google Scholar 

  • Leu JI, Dumont P, Hafey M, Murphy ME, George DL . (2004). Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol 6: 443–450.

    CAS  PubMed  Google Scholar 

  • Levine B, Yuan J . (2005). Autophagy in cell death: an innocent convict? J Clin Invest 115: 2679–2688.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Ho VC . (1998). p53-dependent DNA repair and apoptosis respond differently to high- and low-dose ultraviolet radiation. Br J Dermatol 139: 3–10.

    CAS  PubMed  Google Scholar 

  • Li H, Zhu H, Xu CJ, Yuan J . (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94: 491–501.

    CAS  PubMed  Google Scholar 

  • Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH et al. (2006). Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8: 688–699.

    CAS  PubMed  Google Scholar 

  • Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H et al. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402: 672–676.

    CAS  PubMed  Google Scholar 

  • Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G et al. (1998). Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol 72: 8586–8596.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lieberthal W, Triaca V, Levine J . (1996). Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs necrosis. Am J Physiol 270: F700–F708.

    CAS  PubMed  Google Scholar 

  • Lin Y, Choksi S, Shen HM, Yang QF, Hur GM, Kim YS et al. (2004). Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J Biol Chem 279: 10822–10828.

    CAS  PubMed  Google Scholar 

  • Lin Y, Devin A, Rodriguez Y, Liu ZG . (1999). Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev 13: 2514–2526.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe SW, Cepero E, Evan G . (2004). Intrinsic tumour suppression. Nature 432: 307–315.

    CAS  PubMed  Google Scholar 

  • Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T et al. (2005). Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120: 237–248.

    CAS  PubMed  Google Scholar 

  • Luo S, Rubinsztein DC . (2010). Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL. Cell Death Differ 17: 268–277.

    CAS  PubMed  Google Scholar 

  • Luo X, Budihardjo I, Zou H, Slaughter C, Wang X . (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94: 481–490.

    CAS  PubMed  Google Scholar 

  • Maiuri MC, Criollo A, Tasdemir E, Vicencio JM, Tajeddine N, Hickman JA et al. (2007a). BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy 3: 374–376.

    CAS  PubMed  Google Scholar 

  • Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P et al. (2007b). Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 26: 2527–2539.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marino G, Salvador-Montoliu N, Fueyo A, Knecht E, Mizushima N, Lopez-Otin C . (2007). Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem 282: 18573–18583.

    CAS  PubMed  Google Scholar 

  • Martins LM, Iaccarino I, Tenev T, Gschmeissner S, Totty NF, Lemoine NR et al. (2002). The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem 277: 439–444.

    CAS  PubMed  Google Scholar 

  • Massoumi R, Chmielarska K, Hennecke K, Pfeifer A, Fassler R . (2006). Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappaB signaling. Cell 125: 665–677.

    CAS  PubMed  Google Scholar 

  • Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY et al. (2009). Autophagy suppresses tumorigenesis through elimination of p62. Cell 137: 1062–1075.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, Degenhardt K et al. (2007). Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 21: 1367–1381.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N et al. (2009). Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11: 385–396.

    CAS  PubMed  Google Scholar 

  • Mayer B, Oberbauer R . (2003). Mitochondrial regulation of apoptosis. News Physiol Sci 18: 89–94.

    CAS  PubMed  Google Scholar 

  • McDonnell TJ, Deane N, Platt FM, Nunez G, Jaeger U, McKearn JP et al. (1989). bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 57: 79–88.

    CAS  PubMed  Google Scholar 

  • McDonnell TJ, Korsmeyer SJ . (1991). Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14; 18). Nature 349: 254–256.

    CAS  PubMed  Google Scholar 

  • McKenzie S, Kyprianou N . (2006). Apoptosis evasion: the role of survival pathways in prostate cancer progression and therapeutic resistance. J Cell Biochem 97: 18–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Micheau O, Thome M, Schneider P, Holler N, Tschopp J, Nicholson DW et al. (2002). The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem 277: 45162–45171.

    CAS  PubMed  Google Scholar 

  • Micheau O, Tschopp J . (2003). Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114: 181–190.

    CAS  PubMed  Google Scholar 

  • Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P et al. (2003). p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11: 577–590.

    CAS  PubMed  Google Scholar 

  • Miracco C, Cosci E, Oliveri G, Luzi P, Pacenti L, Monciatti I et al. (2007). Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumours. Int J Oncol 30: 429–436.

    CAS  PubMed  Google Scholar 

  • Miura M . (2011). Active participation of cell death in development and organismal homeostasis. Dev Growth Differ 53: 125–136.

    CAS  PubMed  Google Scholar 

  • Mizushima N, Ohsumi Y, Yoshimori T . (2002). Autophagosome formation in mammalian cells. Cell Struct Funct 27: 421–429.

    PubMed  Google Scholar 

  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ . (2008). Autophagy fights disease through cellular self-digestion. Nature 451: 1069–1075.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mortimore GE, Schworer CM . (1977). Induction of autophagy by amino-acid deprivation in perfused rat liver. Nature 270: 174–176.

    CAS  PubMed  Google Scholar 

  • Muller M, Wilder S, Bannasch D, Israeli D, Lehlbach K, Li-Weber M et al. (1998). p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 188: 2033–2045.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano K, Vousden KH . (2001). PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7: 683–694.

    CAS  PubMed  Google Scholar 

  • Novikoff AB, Essner E, Quintana N . (1964). Golgi apparatus and lysosomes. Fed Proc 23: 1010–1022.

    CAS  PubMed  Google Scholar 

  • O'Donnell MA, Perez-Jimenez E, Oberst A, Ng A, Massoumi R, Xavier R et al. (2011). Caspase 8 inhibits programmed necrosis by processing CYLD. Nat Cell Biol 13: 1437–1442.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C et al. (2011). Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471: 363–367.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T et al. (2000). Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288: 1053–1058.

    CAS  PubMed  Google Scholar 

  • Odonkor CA, Achilefu S . (2008). Differential activity of caspase-3 regulates susceptibility of lung and breast tumor cell lines to Paclitaxel. Open Biochem J 2: 121–128.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olopade OI, Adeyanju MO, Safa AR, Hagos F, Mick R, Thompson CB et al. (1997). Overexpression of BCL-x protein in primary breast cancer is associated with high tumor grade and nodal metastases. Cancer J Sci Am 3: 230–237.

    CAS  PubMed  Google Scholar 

  • Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al. (2005). An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435: 677–681.

    CAS  PubMed  Google Scholar 

  • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H et al. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282: 24131–24145.

    CAS  PubMed  Google Scholar 

  • Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N et al. (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122: 927–939.

    CAS  PubMed  Google Scholar 

  • Pavet V, Portal MM, Moulin JC, Herbrecht R, Gronemeyer H . (2011). Towards novel paradigms for cancer therapy. Oncogene 30: 1–20.

    CAS  PubMed  Google Scholar 

  • Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A et al. (2003). Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112: 1809–1820.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC et al. (1997). Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275: 967–969.

    CAS  PubMed  Google Scholar 

  • Rosenfeldt MT, Ryan KM . (2009). The role of autophagy in tumour development and cancer therapy. Expert Rev Mol Med 11: e36.

    PubMed  PubMed Central  Google Scholar 

  • Rosenfeldt MT, Ryan KM . (2011). The multiple roles of autophagy in cancer. Carcinogenesis 32: 955–963.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G, Vandenabeele P . (2004). Toxic proteins released from mitochondria in cell death. Oncogene 23: 2861–2874.

    CAS  PubMed  Google Scholar 

  • Salvesen GS, Renatus M . (2002). Apoptosome: the seven-spoked death machine. Dev Cell 2: 256–257.

    CAS  PubMed  Google Scholar 

  • Samara C, Syntichaki P, Tavernarakis N . (2008). Autophagy is required for necrotic cell death in Caenorhabditis elegans. Cell Death Differ 15: 105–112.

    CAS  PubMed  Google Scholar 

  • Sax JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ, El-Deiry WS . (2002). BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol 4: 842–849.

    CAS  PubMed  Google Scholar 

  • Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ et al. (1998). Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17: 1675–1687.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt CA, Lowe SW . (1999). Apoptosis and therapy. J Pathol 187: 127–137.

    CAS  PubMed  Google Scholar 

  • Scholl C, Frohling S, Dunn IF, Schinzel AC, Barbie DA, Kim SY et al. (2009). Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 137: 821–834.

    CAS  PubMed  Google Scholar 

  • Schwarze PE, Seglen PO . (1985). Reduced autophagic activity, improved protein balance and enhanced in vitro survival of hepatocytes isolated from carcinogen-treated rats. Exp Cell Res 157: 15–28.

    CAS  PubMed  Google Scholar 

  • Shen S, Kepp O, Michaud M, Martins I, Minoux H, Metivier D et al. (2011). Association and dissociation of autophagy, apoptosis and necrosis by systematic chemical study. Oncogene 30: 4544–4556.

    CAS  PubMed  Google Scholar 

  • Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB et al. (2004). Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6: 1221–1228.

    CAS  PubMed  Google Scholar 

  • Shiraishi H, Okamoto H, Hara H, Yoshida H . (2010). Alternative cell death of Apaf1-deficient neural progenitor cells induced by withdrawal of EGF or insulin. Biochim Biophys Acta 1800: 405–415.

    CAS  PubMed  Google Scholar 

  • Shivapurkar N, Toyooka S, Eby MT, Huang CX, Sathyanarayana UG, Cunningham HT et al. (2002). Differential inactivation of caspase-8 in lung cancers. Cancer Biol Ther 1: 65–69.

    CAS  PubMed  Google Scholar 

  • Solary E, Dubrez L, Eymin B . (1996). The role of apoptosis in the pathogenesis and treatment of diseases. Eur Respir J 9: 1293–1305.

    CAS  PubMed  Google Scholar 

  • Soldani C, Scovassi AI . (2002). Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis 7: 321–328.

    CAS  PubMed  Google Scholar 

  • Solomon VR, Lee H . (2009). Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol 625: 220–233.

    CAS  PubMed  Google Scholar 

  • Soria JC, Mark Z, Zatloukal P, Szima B, Albert I, Juhasz E et al. (2011). Randomized Phase II study of Dulanermin in combination with paclitaxel, carboplatin, and bevacizumab in advanced non-small-cell lung cancer. J Clin Oncol 29: 4442–4451.

    CAS  PubMed  Google Scholar 

  • Tait SW, Green DR . (2010). Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11: 621–632.

    CAS  PubMed  Google Scholar 

  • Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y et al. (2007). Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9: 1142–1151.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S et al. (2011). Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25: 795–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takimoto R, El-Deiry WS . (2000). Wild-type p53 transactivates the KILLER/DR5 gene through an intronic sequence-specific DNA-binding site. Oncogene 19: 1735–1743.

    CAS  PubMed  Google Scholar 

  • Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M et al. (2008). Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 10: 676–687.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Temkin V, Huang Q, Liu H, Osada H, Pope RM . (2006). Inhibition of ADP/ATP exchange in receptor-interacting protein-mediated necrosis. Mol Cell Biol 26: 2215–2225.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F et al. (2011). The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 43: 432–448.

    CAS  PubMed  Google Scholar 

  • Thornborrow EC, Patel S, Mastropietro AE, Schwartzfarb EM, Manfredi JJ . (2002). A conserved intronic response element mediates direct p53-dependent transcriptional activation of both the human and murine bax genes. Oncogene 21: 990–999.

    CAS  PubMed  Google Scholar 

  • Tsujimoto Y, Cossman J, Jaffe E, Croce CM . (1985). Involvement of the bcl-2 gene in human follicular lymphoma. Science 228: 1440–1443.

    CAS  PubMed  Google Scholar 

  • Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM . (1984). Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226: 1097–1099.

    CAS  PubMed  Google Scholar 

  • Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G . (2010). Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11: 700–714.

    CAS  PubMed  Google Scholar 

  • Vaux DL, Cory S, Adams JM . (1988). Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335: 440–442.

    CAS  PubMed  Google Scholar 

  • Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G, Declercq W et al. (1998a). Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 187: 1477–1485.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vercammen D, Brouckaert G, Denecker G, Van de Craen M, Declercq W, Fiers W et al. (1998b). Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J Exp Med 188: 919–930.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE et al. (2000). Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102: 43–53.

    CAS  PubMed  Google Scholar 

  • Walczak H, Krammer PH . (2000). The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res 256: 58–66.

    CAS  PubMed  Google Scholar 

  • Wiman KG . (2010). Pharmacological reactivation of mutant p53: from protein structure to the cancer patient. Oncogene 29: 4245–4252.

    CAS  PubMed  Google Scholar 

  • Wright A, Reiley WW, Chang M, Jin W, Lee AJ, Zhang M et al. (2007). Regulation of early wave of germ cell apoptosis and spermatogenesis by deubiquitinating enzyme CYLD. Dev Cell 13: 705–716.

    CAS  PubMed  Google Scholar 

  • Wu Y, Mehew JW, Heckman CA, Arcinas M, Boxer LM . (2001). Negative regulation of bcl-2 expression by p53 in hematopoietic cells. Oncogene 20: 240–251.

    CAS  PubMed  Google Scholar 

  • Wu YT, Tan HL, Huang Q, Kim YS, Pan N, Ong WY et al. (2008). Autophagy plays a protective role during zVAD-induced necrotic cell death. Autophagy 4: 457–466.

    CAS  PubMed  Google Scholar 

  • Wu YT, Tan HL, Huang Q, Sun XJ, Zhu X, Shen HM . (2011). zVAD-induced necroptosis in L929 cells depends on autocrine production of TNFalpha mediated by the PKC-MAPKs-AP-1 pathway. Cell Death Differ 18: 26–37.

    CAS  PubMed  Google Scholar 

  • Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H et al. (2011). Pancreatic cancers require autophagy for tumor growth. Genes Dev 25: 717–729.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Hu W, Feng S, Ma J, Wu M . (2005). RIP3 beta and RIP3 gamma, two novel splice variants of receptor-interacting protein 3 (RIP3), downregulate RIP3-induced apoptosis. Biochem Biophys Res Commun 332: 181–187.

    CAS  PubMed  Google Scholar 

  • Yang Z, Klionsky DJ . (2010). Eaten alive: a history of macroautophagy. Nat Cell Biol 12: 814–822.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin C, Knudson CM, Korsmeyer SJ, Van Dyke T . (1997). Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 385: 637–640.

    CAS  PubMed  Google Scholar 

  • Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S et al. (2004). Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304: 1500–1502.

    CAS  PubMed  Google Scholar 

  • Yue Z, Jin S, Yang C, Levine AJ, Heintz N . (2003). Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100: 15077–15082.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng H, Zhang S, Yang KY, Wang T, Hu JL, Huang LL et al. (2010). Knockdown of second mitochondria-derived activator of caspase expression by RNAi enhances growth and cisplatin resistance of human lung cancer cells. Cancer Biother Radiopharm 25: 705–712.

    CAS  PubMed  Google Scholar 

  • Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC et al. (2009). RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325: 332–336.

    CAS  PubMed  Google Scholar 

  • Zhang H, Zhou X, McQuade T, Li J, Chan FK, Zhang J . (2011). Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471: 373–376.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Stirling B, Temmerman ST, Ma CA, Fuss IJ, Derry JM et al. (2006). Impaired regulation of NF-kappaB and increased susceptibility to colitis-associated tumorigenesis in CYLD-deficient mice. J Clin Invest 116: 3042–3049.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB . (2004). Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 18: 1272–1282.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologise to researchers whose studies we were unable to cite due to the length of this review. We thank the members of the Tumour Cell Death Laboratory for critical reading of the manuscript. Work in the Tumour Cell Death Laboratory is supported by Cancer Research UK and the Association for International Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K M Ryan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, J., Ryan, K. New frontiers in promoting tumour cell death: targeting apoptosis, necroptosis and autophagy. Oncogene 31, 5045–5060 (2012). https://doi.org/10.1038/onc.2012.7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.7

Keywords

This article is cited by

Search

Quick links