Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Human skin neural crest progenitor cells are susceptible to BRAFV600E-induced transformation

Abstract

Adult stem cells are multipotent and persist in small numbers in adult tissues throughout the lifespan of an organism. Unlike differentiated cells, adult stem cells are intrinsically resistant to senescence. It is unclear how adult stem cells in solid organs respond to oncogenic stimulation and whether these cells have a role in tumor initiation. We report here that expression of BRAFV600E in human neural crest progenitor cells (hNCPCs) did not induce growth arrest as seen in human melanocytes, but instead, increased their cell proliferation capacity. These cells (hNCPCsV600E) acquired anchorage-independent growth ability and were weakly tumorigenic in vivo. Unlike in human melanocytes, BRAFV600E expression in hNCPCs did not induce p16INK4a expression. BRAFV600E induced elevated expression of CDK2, CDK4, MITF and EST1/2 protein in hNCPCs, and also induced melanocytic differentiation of these cells. Furthermore, overexpression of MITF in hNCPCsV600E dramatically increased their tumorigenicity and resulted in fully transformed tumor cells. These findings indicate that hNCPCs are susceptible to BRAFV600E-induced transformation, and MITF potentiates the oncogenic effect of BRAFV600E in these progenitor cells. These results suggest that the hNCPCs are potential targets for BRAFV600E-induced melanocytic tumor formation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Fernandes KJ, McKenzie IA, Mill P, Smith KM, Akhavan M, Barnabe-Heider F et al. A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol 2004; 6: 1082–1093.

    Article  CAS  Google Scholar 

  2. Kruger GM, Mosher JT, Bixby S, Joseph N, Iwashita T, Morrison SJ . Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron 2002; 35: 657–669.

    Article  CAS  Google Scholar 

  3. Morrison SJ, White PM, Zock C, Anderson DJ . Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 1999; 96: 737–749.

    Article  CAS  Google Scholar 

  4. Sieber-Blum M . Cardiac neural crest stem cells. Anat Rec A Discov Mol Cell Evol Biol 2004; 276: 34–42.

    Article  Google Scholar 

  5. Sieber-Blum M, Grim M, Hu YF, Szeder V . Pluripotent neural crest stem cells in the adult hair follicle. Dev Dyn 2004; 231: 258–269.

    Article  CAS  Google Scholar 

  6. Wong CE, Paratore C, Dours-Zimmermann MT, Rochat A, Pietri T, Suter U et al. Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin. J Cell Biol 2006; 175: 1005–1015.

    Article  CAS  Google Scholar 

  7. Amoh Y, Li L, Katsuoka K, Penman S, Hoffman RM . Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. Proc Natl Acad Sci USA 2005; 102: 5530–5534.

    Article  CAS  Google Scholar 

  8. Yu H, Fang D, Kumar SM, Li L, Nguyen TK, Acs G et al. Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am J Pathol 2006; 168: 1879–1888.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sieber-Blum M, Grim M . The adult hair follicle: cradle for pluripotent neural crest stem cells. Birth Defects Res C Embryo Today 2004; 72: 162–172.

    Article  CAS  Google Scholar 

  10. Li L, Mignone J, Yang M, Matic M, Penman S, Enikolopov G et al. Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci USA 2003; 100: 9958–9961.

    Article  CAS  Google Scholar 

  11. Hu YF, Zhang ZJ, Sieber-Blum M . An epidermal neural crest stem cell (EPI-NCSC) molecular signature. Stem Cells 2006; 24: 2692–2702.

    Article  CAS  Google Scholar 

  12. Clarke MF, Fuller M . Stem cells and cancer: two faces of eve. Cell 2006; 124: 1111–1115.

    Article  CAS  Google Scholar 

  13. Polyak K, Hahn WC . Roots and stems: stem cells in cancer. Nat Med 2006; 12: 296–300.

    Article  CAS  Google Scholar 

  14. Duband JL . Neural crest delamination and migration: integrating regulations of cell interactions, locomotion, survival and fate. Adv Exp Med Biol 2006; 589: 45–77.

    Article  CAS  Google Scholar 

  15. Hilton MJ, Tu X, Wu X, Bai S, Zhao H, Kobayashi T et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 2008; 14: 306–314.

    Article  CAS  Google Scholar 

  16. Rossi DJ, Jamieson CH, Weissman IL . Stems cells and the pathways to aging and cancer. Cell 2008; 132: 681–696.

    Article  CAS  Google Scholar 

  17. Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 2011; 20: 11–24.

    Article  CAS  Google Scholar 

  18. Elder DE . Tumorigenic melanocytic proliferations. Demos Medical Publishing, 2009.

    Google Scholar 

  19. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.

    Article  CAS  Google Scholar 

  20. Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 2005; 436: 720–724.

    Article  CAS  Google Scholar 

  21. Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF, Murphey RD et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 2005; 15: 249–254.

    Article  CAS  Google Scholar 

  22. Milagre C, Dhomen N, Geyer FC, Hayward R, Lambros M, Reis-Filho JS et al. A mouse model of melanoma driven by oncogenic KRAS. Cancer Res 2010; 70: 5549–5557.

    Article  CAS  Google Scholar 

  23. Yu H, Kumar SM, Kossenkov AV, Showe L, Xu X . Stem cells with neural crest characteristics derived from the bulge region of cultured human hair follicles. J Invest Dermatol 2010; 130: 1227–1236.

    Article  CAS  Google Scholar 

  24. Kumar SM, Yu H, Edwards R, Chen L, Kazianis S, Brafford P et al. Mutant V600E BRAF increases hypoxia inducible factor-1alpha expression in melanoma. Cancer Res 2007; 67: 3177–3184.

    Article  CAS  Google Scholar 

  25. Baird DM . Telomere dynamics in human cells. Biochimie 2008; 90: 116–121.

    Article  CAS  Google Scholar 

  26. Squarzoni P, Parveen F, Zanetti L, Ristoratore F, Spagnuolo A . FGF/MAPK/Ets signaling renders pigment cell precursors competent to respond to Wnt signal by directly controlling Ci-Tcf transcription. Development 2011; 138: 1421–1432.

    Article  CAS  Google Scholar 

  27. Wellbrock C, Rana S, Paterson H, Pickersgill H, Brummelkamp T, Marais R . Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. PLoS One 2008; 3: e2734.

    Article  Google Scholar 

  28. Morrison SJ, Spradling AC . Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 2008; 132: 598–611.

    Article  CAS  Google Scholar 

  29. Cotsarelis G, Sun TT, Lavker RM . Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 1990; 61: 1329–1337.

    Article  CAS  Google Scholar 

  30. Matsuoka S, Oike Y, Onoyama I, Iwama A, Arai F, Takubo K et al. Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes Dev 2008; 22: 986–991.

    Article  CAS  Google Scholar 

  31. Passegue E, Jamieson CH, Ailles LE, Weissman IL . Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA 2003; 100 (Suppl 1): 11842–11849.

    Article  CAS  Google Scholar 

  32. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667.

    CAS  Google Scholar 

  33. Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC et al. Spontaneous human adult stem cell transformation. Cancer Res 2005; 65: 3035–3039.

    Article  CAS  Google Scholar 

  34. Shiras A, Chettiar ST, Shepal V, Rajendran G, Prasad GR, Shastry P . Spontaneous transformation of human adult nontumorigenic stem cells to cancer stem cells is driven by genomic instability in a human model of glioblastoma. Stem Cells 2007; 25: 1478–1489.

    Article  CAS  Google Scholar 

  35. Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A et al. Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 2007; 67: 9142–9149.

    Article  CAS  Google Scholar 

  36. Foroni C, Galli R, Cipelletti B, Caumo A, Alberti S, Fiocco R et al. Resilience to transformation and inherent genetic and functional stability of adult neural stem cells ex vivo. Cancer Res 2007; 67: 3725–3733.

    Article  CAS  Google Scholar 

  37. Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 2006; 444: 633–637.

    Article  CAS  Google Scholar 

  38. Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 2005; 436: 660–665.

    Article  CAS  Google Scholar 

  39. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 2006; 444: 638–642.

    Article  CAS  Google Scholar 

  40. Mooi WJ, Peeper DS . Oncogene-induced cell senescence—halting on the road to cancer. N Engl J Med 2006; 355: 1037–1046.

    Article  CAS  Google Scholar 

  41. Yaswen P, Campisi J . Oncogene-induced senescence pathways weave an intricate tapestry. Cell 2007; 128: 233–234.

    Article  CAS  Google Scholar 

  42. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR . Role for IGFBP7 in senescence induction by BRAF. Cell 2010; 141: 746–747.

    Article  CAS  Google Scholar 

  43. Yu H, McDaid R, Lee J, Possik P, Li L, Kumar SM et al. The role of BRAF mutation and p53 inactivation during transformation of a subpopulation of primary human melanocytes. Am J Pathol 2009; 174: 2367–2377.

    Article  CAS  Google Scholar 

  44. Witkiewicz AK, Knudsen KE, Dicker AP, Knudsen ES . The meaning of p16(ink4a) expression in tumors: functional significance, clinical associations and future developments. Cell Cycle 2011; 10: 2497–2503.

    Article  CAS  Google Scholar 

  45. Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 2005; 436: 117–122.

    Article  CAS  Google Scholar 

  46. Du J, Widlund HR, Horstmann MA, Ramaswamy S, Ross K, Huber WE et al. Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell 2004; 6: 565–576.

    Article  CAS  Google Scholar 

  47. Bloethner S, Snellman E, Bermejo JL, Hiripi E, Gast A, Thirumaran RK et al. Differential gene expression in melanocytic nevi with the V600E BRAF mutation. Genes Chromosomes Cancer 2007; 46: 1019–1027.

    Article  CAS  Google Scholar 

  48. Carreira S, Goodall J, Aksan I, La Rocca SA, Galibert MD, Denat L et al. Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature 2005; 433: 764–769.

    Article  CAS  Google Scholar 

  49. Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 2001; 19: 971–974.

    Article  CAS  Google Scholar 

  50. Kumar SM, Acs G, Fang D, Herlyn M, Elder DE, Xu X . Functional erythropoietin autocrine loop in melanoma. Am J Pathol 2005; 166: 823–830.

    Article  CAS  Google Scholar 

  51. Greshock J, Naylor TL, Margolin A, Diskin S, Cleaver SH, Futreal PA et al. 1-Mb resolution array-based comparative genomic hybridization using a BAC clone set optimized for cancer gene analysis. Genome Res 2004; 14: 179–187.

    Article  CAS  Google Scholar 

  52. Vaquerizas JM, Dopazo J, Diaz-Uriarte R . DNMAD: web-based diagnosis and normalization for microarray data. Bioinformatics 2004; 20: 3656–3658.

    Article  CAS  Google Scholar 

  53. Storey JD, Tibshirani R . Statistical significance for genomewide studies. Proc Natl Acad Sci USA 2003; 100: 9440–9445.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs M Herlyn from the Wistar Institute, Philadelphia, PA for melanoma cell lines, R Marais from the Institute of Cancer Research, London, UK for BRAFV600E plasmids, S Carreira from Marie Curie Research Institute, UK for MITF promoter-luciferase plasmids, F Liu from university of California for QCXIP-MiTF and QCXIP vectors, K Huang for editing the manuscript. CHTN for providing tissues and the immunohistochemical lab at the Department of Pathology and Laboratory medicine, University of Pennsylvania for immunohistochemical stains. This work is supported by US National Institutes of Health grants AR-054593, CA-116103 to XX.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Guo or X Xu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Dai, J., Li, S. et al. Human skin neural crest progenitor cells are susceptible to BRAFV600E-induced transformation. Oncogene 33, 832–841 (2014). https://doi.org/10.1038/onc.2012.642

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.642

Keywords

This article is cited by

Search

Quick links