Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MicroRNA-296-5p increases proliferation in gastric cancer through repression of Caudal-related homeobox 1

Abstract

Caudal-related homeobox 1 (CDX1), an intestinal-specific transcription factor, has been reported to have vital roles in gastric intestinal metaplasia (IM). Although IM is a high-risk factor for gastric cancer (GC), the specific role of CDX1 in GC is largely unknown. In this study, we investigated the expression of CDX1 and its functional roles in GC, and its upstream regulatory mechanisms at the microRNA (miRNA) level were further explored. We found that CDX1 is lost in GC when compared with adjacent IM tissues. Gain-of-function studies showed that CDX1 significantly inhibited GC cell growth by inducing cell cycle arrest and apoptosis. Interestingly, we identified and verified an onco-mir, miR-296-5p, as a direct upstream regulator of CDX1. miR-296-5p overexpression significantly promoted GC cell growth and attenuated the CDX1-induced anti-growth effects by recurring cell cycle distribution and apoptotic status, whereas knockdown of miR-296-5p decreased GC cell growth. Furthermore, we found that the extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation and the subsequent downstream changes in protein levels related to cell cycle and apoptosis partly account for the miR-296-5p–CDX1-induced GC growth promotion. In addition, the detection of miR-296-5p and expression of CDX1 in primary GC tissues and adjacent IM tissues revealed that miR-296-5p is inversely correlated with CDX1, further supporting our in vitro results. Our results showed an anti-growth effect of CDX1 and identified its miRNA regulatory mechanism in GC. The identification of this novel miR-296-5p–CDX1–ERK1/2 axis sheds new light on the understanding of the process from IM to GC and may provide therapeutic targets for the treatment of GC.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. DM P . Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74–108.

    Article  Google Scholar 

  2. LAUREN P . The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand 1965; 64: 31–49.

    Article  CAS  Google Scholar 

  3. You WC, Li JY, Blot WJ, Chang YS, Jin ML, Gail MH et al. Evolution of precancerous lesions in a rural Chinese population at high risk of gastric cancer. Int J Cancer 1999; 83: 615–619.

    Article  CAS  Google Scholar 

  4. Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M et al. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 2001; 345: 784–789.

    Article  CAS  Google Scholar 

  5. Camilo V, Barros R, Sousa S, Magalhães AM, Lopes T, Mário Santos A et al. Helicobacter pylori and the BMP pathway regulate CDX2 and SOX2 expression in gastric cells. Carcinogenesis 2012; 33: 1985–1992.

    Article  CAS  Google Scholar 

  6. Ito K, Chuang LS, Ito T, Chang TL, Fukamachi H, Salto-Tellez M et al. Loss of Runx3 is a key event in inducing precancerous state of the stomach. Gastroenterology 2011; 140: 1536–1546 e8.

    Article  CAS  Google Scholar 

  7. Silberg DG, Swain GP, Suh ER, Traber PG . Cdx1 and cdx2 expression during intestinal development. Gastroenterology 2000; 119: 961–971.

    Article  CAS  Google Scholar 

  8. Mutoh H, Sakurai S, Satoh K, Osawa H, Hakamata Y, Takeuchi T et al. Cdx1 induced intestinal metaplasia in the transgenic mouse stomach: comparative study with Cdx2 transgenic mice. Gut 2004; 53: 1416–1423.

    Article  CAS  Google Scholar 

  9. Johnstone CN, White SJ, Tebbutt NC, Clay FJ, Ernst M, Biggs WH et al. Analysis of the regulation of the A33 antigen gene reveals intestine-specific mechanisms of gene expression. J Biol Chem 2002; 277: 34531–34539.

    Article  CAS  Google Scholar 

  10. Chan CW, Wong NA, Liu Y, Bicknell D, Turley H, Hollins L et al. Gastrointestinal differentiation marker Cytokeratin 20 is regulated by homeobox gene CDX1. Proc Natl Acad Sci USA 2009; 106: 1936–1941.

    Article  Google Scholar 

  11. Mallo GV, Rechreche H, Frigerio JM, Rocha D, Zweibaum A, Lacasa M et al. Molecular cloning, sequencing and expression of the mRNA encoding human Cdx1 and Cdx2 homeobox. Down-regulation of Cdx1 and Cdx2 mRNA expression during colorectal carcinogenesis. Int J Cancer 1997; 74: 35–44.

    Article  CAS  Google Scholar 

  12. Suh ER, Ha CS, Rankin EB, Toyota M, Traber PG . DNA methylation down-regulates CDX1 gene expression in colorectal cancer cell lines. J Biol Chem 2002; 277: 35795–35800.

    Article  CAS  Google Scholar 

  13. Wong NA, Britton MP, Choi GS, Stanton TK, Bicknell DC, Wilding JL et al. Loss of CDX1 expression in colorectal carcinoma: promoter methylation, mutation, and loss of heterozygosity analyses of 37 cell lines. Proc Natl Acad Sci USA 2004; 101: 574–579.

    Article  CAS  Google Scholar 

  14. Lynch J, Suh ER, Silberg DG, Rulyak S, Blanchard N, Traber PG et al. The caudal-related homeodomain protein Cdx1 inhibits proliferation of intestinal epithelial cells by down-regulation of D-type cyclins. J Biol Chem 2000; 275: 4499–4506.

    Article  CAS  Google Scholar 

  15. Lynch J, Keller M, Guo RJ, Yang D, Traber P . Cdx1 inhibits the proliferation of human colon cancer cells by reducing cyclin D1 gene expression. Oncogene 2003; 22: 6395–6407.

    Article  CAS  Google Scholar 

  16. Guo RJ, Huang E, Ezaki T, Patel N, Sinclair K, Wu J et al. Cdx1 inhibits human colon cancer cell proliferation by reducing beta-catenin/T-cell factor transcriptional activity. J Biol Chem 2004; 279: 36865–36875.

    Article  CAS  Google Scholar 

  17. Crissey MA, Guo RJ, Fogt F, Li H, Katz JP, Silberg DG et al. The homeodomain transcription factor Cdx1 does not behave as an oncogene in normal mouse intestine. Neoplasia 2008; 10: 8–19.

    Article  CAS  Google Scholar 

  18. Soubeyran P, Haglund K, Garcia S, Barth BU, Iovanna J, Dikic I et al. Homeobox gene Cdx1 regulates Ras, Rho and PI3 kinase pathways leading to transformation and tumorigenesis of intestinal epithelial cells. Oncogene 2001; 20: 4180–4187.

    Article  CAS  Google Scholar 

  19. Silberg DG, Furth EE, Taylor JK, Schuck T, Chiou T, Traber PG et al. CDX1 protein expression in normal, metaplastic, and neoplastic human alimentary tract epithelium. Gastroenterology 1997; 113: 478–486.

    Article  CAS  Google Scholar 

  20. Boussioutas A, Li H, Liu J, Waring P, Lade S, Holloway AJ et al. Distinctive patterns of gene expression in premalignant gastric mucosa and gastric cancer. Cancer Res 2003; 63: 2569–2577.

    CAS  PubMed  Google Scholar 

  21. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    Article  CAS  Google Scholar 

  22. Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I et al. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 2008; 13: 272–286.

    Article  CAS  Google Scholar 

  23. Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer 2008; 123: 372–379.

    Article  CAS  Google Scholar 

  24. Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS . MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 2009; 137: 647–658.

    Article  CAS  Google Scholar 

  25. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY et al. miR-21-mediated tumor growth. Oncogene 2007; 26: 2799–2803.

    Article  CAS  Google Scholar 

  26. Papagiannakopoulos T, Shapiro A, Kosik KS . MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res 2008; 68: 8164–8172.

    Article  CAS  Google Scholar 

  27. Darido C, Georgy SR, Wilanowski T, Dworkin S, Auden A, Zhao Q et al. Targeting of the tumor suppressor GRHL3 by a miR-21-dependent proto-oncogenic network results in PTEN loss and tumorigenesis. Cancer Cell 2011; 20: 635–648.

    Article  CAS  Google Scholar 

  28. Fornari F, Milazzo M, Chieco P, Negrini M, Calin GA, Grazi GL et al. MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res 2010; 70: 5184–5193.

    Article  CAS  Google Scholar 

  29. Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q et al. Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell 2011; 19: 232–243.

    Article  CAS  Google Scholar 

  30. Wurdinger T, Tannous BA, Saydam O, Skog J, Grau S, Soutschek J et al. miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell 2008; 14: 382–393.

    Article  CAS  Google Scholar 

  31. Hong L, Han Y, Zhang H, Li M, Gong T, Sun L et al. The prognostic and chemotherapeutic value of miR-296 in esophageal squamous cell carcinoma. Ann Surg 2010; 251: 1056–1063.

    Article  Google Scholar 

  32. Yoon AR, Gao R, Kaul Z, Choi IK, Ryu J, Noble JR et al. MicroRNA-296 is enriched in cancer cells and downregulates p21WAF1 mRNA expression via interaction with its 3' untranslated region. Nucleic Acids Res 2011; 39: 8078–8091.

    Article  CAS  Google Scholar 

  33. Domon-Dell C, Schneider A, Moucadel V, Guerin E, Guenot D, Aguillon S et al. Cdx1 homeobox gene during human colon cancer progression. Oncogene 2003; 22: 7913–7921.

    Article  Google Scholar 

  34. Soubeyran P, André F, Lissitzky JC, Mallo GV, Moucadel V, Roccabianca M et al. Cdx1 promotes differentiation in a rat intestinal epithelial cell line. Gastroenterology 1999; 117: 1326–1338.

    Article  CAS  Google Scholar 

  35. Wong NA, Wilding J, Bartlett S, Liu Y, Warren BF, Piris J et al. CDX1 is an important molecular mediator of Barrett's metaplasia. Proc Natl Acad Sci USA 2005; 102: 7565–7570.

    Article  CAS  Google Scholar 

  36. Kazumori H, Ishihara S, Kinoshita Y . Roles of caudal-related homeobox gene Cdx1 in oesophageal epithelial cells in Barrett's epithelium development. Gut 2009; 58: 620–628.

    Article  CAS  Google Scholar 

  37. Kan T, Sato F, Ito T, Matsumura N, David S, Cheng Y et al. The miR-106b-25 polycistron, activated by genomic amplification, functions as an oncogene by suppressing p21 and Bim. Gastroenterology 2009; 136: 1689–1700.

    Article  CAS  Google Scholar 

  38. Zhao X, Dou W, He L, Liang S, Tie J, Liu C et al. MicroRNA-7 functions as an anti-metastatic microRNA in gastric cancer by targeting insulin-like growth factor-1 receptor. Oncogene 2013; 32: 1363–1372.

    Article  CAS  Google Scholar 

  39. Xu Y, Zhao F, Wang Z, Song Y, Luo Y, Zhang X et al. MicroRNA-335 acts as a metastasis suppressor in gastric cancer by targeting Bcl-w and specificity protein 1. Oncogene 2012; 31: 1398–1407.

    Article  CAS  Google Scholar 

  40. Chaudhuri K, Chatterjee R . MicroRNA detection and target prediction: integration of computational and experimental approaches. DNA Cell Biol 2007; 26: 321–337.

    Article  CAS  Google Scholar 

  41. Vaira V, Faversani A, Dohi T, Montorsi M, Augello C, Gatti S et al. miR-296 regulation of a cell polarity-cell plasticity module controls tumor progression. Oncogene 2012; 31: 27–38.

    Article  CAS  Google Scholar 

  42. Chang L, Karin M . Mammalian MAP kinase signalling cascades. Nature 2001; 410: 37–40.

    Article  CAS  Google Scholar 

  43. Meloche S, Pouyssegur J . The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 2007; 26: 3227–3239.

    Article  CAS  Google Scholar 

  44. Albanese C, Johnson J, Watanabe G, Eklund N, Vu D, Arnold A et al. Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J Biol Chem 1995; 270: 23589–23597.

    Article  CAS  Google Scholar 

  45. Lavoie JN, L’Allemain G, Brunet A, Müller R, Pouysségur J . Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 1996; 271: 20608–20616.

    Article  CAS  Google Scholar 

  46. Xu Y, Liu L, Qiu X, Liu Z, Li H, Li Z et al. CCL21/CCR7 prevents apoptosis via the ERK pathway in human non-small cell lung cancer cells. PLoS One 2012; 7: e33262.

    Article  CAS  Google Scholar 

  47. Pucci B, Indelicato M, Paradisi V, Reali V, Pellegrini L, Aventaggiato M et al. ERK-1 MAP kinase prevents TNF-induced apoptosis through bad phosphorylation and inhibition of Bax translocation in HeLa Cells. J Cell Biochem 2009; 108: 1166–1174.

    Article  CAS  Google Scholar 

  48. Jeon SH, Yoon JY, Park YN, Jeong WJ, Kim S, Jho EH et al. Axin inhibits extracellular signal-regulated kinase pathway by Ras degradation via beta-catenin. J Biol Chem 2007; 282: 14482–14492.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Z CHEN, GB TANG, JH DOU and G REN from the State Key Laboratory of Cancer Biology for the assistance in tissue sample collection. This work was supported by the National 973 Project of China (no. 2010CB732405, 05; 2010CB529300, 02, 05, 06) and the National Natural Science Foundation of China (no. 81030044, 81270445, 81172062).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y Q Shi or D M Fan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., Lu, Y., Zhao, X. et al. MicroRNA-296-5p increases proliferation in gastric cancer through repression of Caudal-related homeobox 1. Oncogene 33, 783–793 (2014). https://doi.org/10.1038/onc.2012.637

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.637

Keywords

This article is cited by

Search

Quick links