Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

ISGylation governs the oncogenic function of Ki-Ras in breast cancer

Abstract

Aberrant expression of the oncogenic Kirsten-Ras (Ki-Ras) and interferon-stimulated gene 15 (ISG15) pathways is common in breast and other cancers. However, whether these dysregulated pathways cooperate to promote malignancy is not known. This study links Ki-Ras and ISG15 in a previously unidentified regulatory loop that may underlie malignant transformation of mammary cells. We show that oncogenic Ki-Ras regulates the expression of the ISG15 pathway (free ISG15 and ISG15 conjugates), and ISG15, in turn, stabilizes Ki-Ras protein by inhibiting its targeted degradation via lysosomes in breast cancer cells. Disruption of this loop by silencing either Ki-Ras or the ISG15 pathway restored the disrupted cellular architecture, a hallmark feature of most cancer cells. We also demonstrate that ISG15 and UbcH8 (ISG15-specific conjugating enzyme) shRNAs reversed Ki-Ras mutation-associated phenotypes of cancer cells, such as increased cell proliferation, colony formation, anchorage-independent growth in soft agar, cell migration, and epithelial–mesenchymal transition. As UbcH8-silenced breast cancer cells are devoid of ISG15 conjugates but have free ISG15, our results using UbcH8-silenced cells suggest that ISG15 conjugates, and not free ISG15, contributes to oncogenic Ki-Ras transformation. We have thus identified the conjugated form of ISG15 as a critical downstream mediator of oncogenic Ki-Ras, providing a potential mechanistic link between ISG15 and Ki-Ras-mediated breast tumorigenesis. Our findings, which show that inhibition of the ISGylation reverses the malignant phenotypes of breast cancer cells expressing oncogenic Ki-Ras, support the development of ISG15 conjugation inhibitors for treating breast and also other cancers expressing oncogenic Ki-Ras.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Andersen JB, Aaboe M, Borden EC, Goloubeva OG, Hassel BA, Orntoft TF . Stage-associated overexpression of the ubiquitin-like protein, ISG15, in bladder cancer. Br J Cancer 2006; 94: 1465–1471.

    Article  CAS  Google Scholar 

  2. Andersen JB, Hassel BA . The interferon regulated ubiquitin-like protein, ISG15, in tumorigenesis: friend or foe? Cytokine Growth Factor Rev 2006; 17: 411–421.

    Article  CAS  Google Scholar 

  3. Bektas N, Noetzel E, Veeck J, Press MF, Kristiansen G, Naami A et al. The ubiquitin-like molecule interferon-stimulated gene 15 (ISG15) is a potential prognostic marker in human breast cancer. Breast Cancer Res 2008; 10: R58.

    Article  Google Scholar 

  4. Desai SD, Haas AL, Wood LM, Tsai YC, Pestka S, Rubin EH et al. Elevated expression of ISG15 in tumor cells interferes with the ubiquitin/26S proteasome pathway. Cancer Res 2006; 66: 921–928.

    Article  CAS  Google Scholar 

  5. Haas AL, Ahrens P, Bright PM, Ankel H . Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin. J Biol Chem 1987; 262: 11315–11323.

    CAS  PubMed  Google Scholar 

  6. Kiessling A, Hogrefe C, Erb S, Bobach C, Fuessel S, Wessjohann L et al. Expression, regulation and function of the ISGylation system in prostate cancer. Oncogene 2009; 28: 2606–2620.

    Article  CAS  Google Scholar 

  7. Nielsch U, Pine R, Zimmer SG, Babiss LE . Induced expression of the endogenous beta interferon gene in adenovirus type 5-transformed rat fibroblasts. J Virol 1992; 66: 1884–1890.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tsai YC, Pestka S, Wang LH, Runnels LW, Wan S, Lyu YL et al. Interferon-beta signaling contributes to Ras transformation. PLoS ONE 2011; 6: e24291.

    Article  CAS  Google Scholar 

  9. Hummer BT, Li XL, Hassel BA . Role for p53 in gene induction by double-stranded RNA. J Virol 2001; 75: 7774–7777.

    Article  CAS  Google Scholar 

  10. Wood LM, Sankar S, Reed RE, Haas AL, Liu LF, McKinnon P et al. A novel role for ATM in regulating proteasome-mediated protein degradation through suppression of the ISG15 conjugation pathway. PLoS ONE 2011; 6: e16422.

    Article  CAS  Google Scholar 

  11. Tripathi MK, Chaudhuri G . Down-regulation of UCRP and UBE2L6 in BRCA2 knocked-down human breast cells. Biochem Biophys Res Commun 2005; 328: 43–48.

    Article  CAS  Google Scholar 

  12. Harty RN, Pitha PM, Okumura A . Antiviral activity of innate immune protein ISG15. J Innate Immun 2009; 1: 397–404.

    Article  CAS  Google Scholar 

  13. Desai SD, Reed RE, Burks J, Wood LM, Pullikuth AK, Haas AL et al. ISG15 disrupts cytoskeletal architecture and promotes motility in human breast cancer cells. Exp Biol Med (Maywood) 2012; 237: 38–49.

    Article  CAS  Google Scholar 

  14. Guo Y, Chinyengetere F, Dolinko AV, Lopez-Aguiar A, Lu Y, Galimberti F et al. Evidence for the Ubiquitin Protease UBP43 as an Antineoplastic Target. Mol Cancer Ther 2012; 9: 1968–1977.

    Article  Google Scholar 

  15. Pitha-Rowe I, Petty WJ, Feng Q, Koza-Taylor PH, Dimattia DA, Pinder L et al. Microarray analyses uncover UBE1L as a candidate target gene for lung cancer chemoprevention. Cancer Res 2004; 64: 8109–8115.

    Article  CAS  Google Scholar 

  16. McLaughlin PM, Helfrich W, Kok K, Mulder M, Hu SW, Brinker MG et al. The ubiquitin-activating enzyme E1-like protein in lung cancer cell lines. Int J Cancer 2000; 85: 871–876.

    Article  CAS  Google Scholar 

  17. Schneider G, Schmid RM . Genetic alterations in pancreatic carcinoma. Mol Cancer 2003; 2: 15.

    Article  Google Scholar 

  18. Giehl K . Oncogenic Ras in tumour progression and metastasis. Biol Chem 2005; 386: 193–205.

    CAS  PubMed  Google Scholar 

  19. Shirasawa S, Furuse M, Yokoyama N, Sasazuki T . Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science 1993; 260: 85–88.

    Article  CAS  Google Scholar 

  20. Friedman E, Verderame M, Winawer S, Pollack R . Actin cytoskeletal organization loss in the benign-to-malignant tumor transition in cultured human colonic epithelial cells. Cancer Res 1984; 44: 3040–3050.

    CAS  PubMed  Google Scholar 

  21. Hollestelle A, Elstrodt F, Nagel JH, Kallemeijn WW, Schutte M . Phosphatidylinositol-3-OH kinase or RAS pathway mutations in human breast cancer cell lines. Mol Cancer Res 2007; 5: 195–201.

    Article  CAS  Google Scholar 

  22. Eckert LB, Repasky GA, Ulkü AS, McFall A, Zhou H, Sartor CI et al. Involvement of Ras activation in human breast cancer cell signaling, invasion, and anoikis. Cancer Res 2004; 64: 4585–4592.

    Article  CAS  Google Scholar 

  23. Konishi H, Karakas B, Abukhdeir AM, Lauring J, Gustin JP, Garay JP et al. Knock-in of mutant K-ras in nontumorigenic human epithelial cells as a new model for studying K-ras mediated transformation. Cancer Res 2007; 67: 8460–8467.

    Article  CAS  Google Scholar 

  24. Kim SE, Yoon JY, Jeong WJ, Jeon SH, Park Y, Yoon JB et al. H-Ras is degraded by Wnt/beta-catenin signaling via beta-TrCP-mediated polyubiquitylation. J Cell Sci 2009; 122: 842–848.

    Article  CAS  Google Scholar 

  25. Myung J, Kim KB, Crews CM . The ubiquitin-proteasome pathway and proteasome inhibitors. Med Res Rev 2001; 21: 245–273.

    Article  CAS  Google Scholar 

  26. Hochstrasser M . Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol 1995; 7: 215–223.

    Article  CAS  Google Scholar 

  27. Ciechanover A . Early work on the ubiquitin proteasome system, an interview with Aaron Ciechanover. Interview by CDD. Cell Death Differ 2005; 12: 1167–1177.

    Article  Google Scholar 

  28. Mukhopadhyay D, Riezman H . Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 2007; 315: 201–205.

    Article  CAS  Google Scholar 

  29. Lauwers E, Jacob C, Andre B . K63-linked ubiquitin chains as a specific signal for protein sorting into the multivesicular body pathway. J Cell Biol 2009; 185: 493–502.

    Article  CAS  Google Scholar 

  30. Pickart CM . Targeting of substrates to the 26S proteasome. FASEB J 1997; 11: 1055–1066.

    Article  CAS  Google Scholar 

  31. Pickart CM . Ubiquitin in chains. Trends Biochem Sci 2000; 25: 544–548.

    Article  CAS  Google Scholar 

  32. Takeuchi T, Yokosawa H . ISG15 modification of Ubc13 suppresses its ubiquitin-conjugating activity. Biochem Biophys Res Commun 2005; 336: 9–13.

    Article  CAS  Google Scholar 

  33. Zou W, Papov V, Malakhova O, Kim KI, Dao C, Li J et al. ISG15 modification of ubiquitin E2 Ubc13 disrupts its ability to form thioester bond with ubiquitin. Biochem Biophys Res Commun 2005; 336: 61–68.

    Article  CAS  Google Scholar 

  34. Zou W, Wang J, Zhang DE . Negative regulation of ISG15 E3 ligase EFP through its autoISGylation. Biochem Biophys Res Commun 2007; 354: 321–327.

    Article  CAS  Google Scholar 

  35. Takeuchi T, Iwahara S, Saeki Y, Sasajima H, Yokosawa H . Link between the ubiquitin conjugation system and the ISG15 conjugation system: ISG15 conjugation to the UbcH6 ubiquitin E2 enzyme. J Biochem 2005; 138: 711–719.

    Article  CAS  Google Scholar 

  36. Lu A, Tebar F, Alvarez-Moya B, López-Alcalá C, Calvo M, Enrich C et al. A clathrin-dependent pathway leads to KRas signaling on late endosomes en route to lysosomes. J Cell Biol 2009; 184: 863–879.

    Article  CAS  Google Scholar 

  37. Yamamoto A, Tagawa Y, Yoshimori T, Moriyama Y, Masaki R, Tashiro Y . Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct 1998; 23: 33–42.

    Article  CAS  Google Scholar 

  38. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  CAS  Google Scholar 

  39. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  Google Scholar 

  40. Jacobsen K, Groth A, Willumsen BM . Ras-inducible immortalized fibroblasts: focus formation without cell cycle deregulation. Oncogene 2002; 21: 3058–3067.

    Article  CAS  Google Scholar 

  41. Mosesson Y, Mills GB, Yarden Y . Derailed endocytosis: an emerging feature of cancer. Nat Rev Cancer 2008; 8: 835–850.

    Article  CAS  Google Scholar 

  42. Christiansen JJ, Rajasekaran AK . Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 2006; 66: 8319–8326.

    Article  CAS  Google Scholar 

  43. Handschuh G, Candidus S, Luber B, Reich U, Schott C, Oswald S et al. Tumour-associated E-cadherin mutations alter cellular morphology, decrease cellular adhesion and increase cellular motility. Oncogene 1999; 18: 4301–4312.

    Article  CAS  Google Scholar 

  44. Begum R, Nur EKMS, Zaman MA . The role of Rho GTPases in the regulation of the rearrangement of actin cytoskeleton and cell movement. Exp Mol Med 2004; 36: 358–366.

    Article  CAS  Google Scholar 

  45. Bueso-Ramos CE, Yang Y, deLeon E, McCown P, Stass SA, Albitar M . The human MDM-2 oncogene is overexpressed in leukemias. Blood 1993; 82: 2617–2623.

    CAS  PubMed  Google Scholar 

  46. Di Fiore PP, Pierce JH, Kraus MH, Segatto O, King CR, Aaronson SA . erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science 1987; 237: 178–182.

    Article  CAS  Google Scholar 

  47. Scott N, Bell SM, Sagar P, Blair GE, Dixon MF, Quirke P . p53 expression and K-ras mutation in colorectal adenomas. Gut 1993; 34: 621–624.

    Article  CAS  Google Scholar 

  48. Farassati F, Bell SM, Sagar P, Blair GE, Dixon MF, Quirke P . Ras signaling influences permissiveness of malignant peripheral nerve sheath tumor cells to oncolytic herpes. Am J Pathol 2008; 173: 1861–1872.

    Article  CAS  Google Scholar 

  49. Shim JH, Xiao C, Hayden MS, Lee KY, Trombetta ES, Pypaert M et al. CHMP5 is essential for late endosome function and down-regulation of receptor signaling during mouse embryogenesis. J Cell Biol 2006; 172: 1045–1056.

    Article  CAS  Google Scholar 

  50. Pincetic A, Kuang Z, Seo EJ, Leis J . The interferon-induced gene ISG15 blocks retrovirus release from cells late in the budding process. J Virol 2011; 84: 4725–4736.

    Article  Google Scholar 

  51. Kuang Z, Seo EJ, Leis J . Mechanism of inhibition of retrovirus release from cells by interferon-induced gene ISG15. J Virol 2011; 85: 7153–7161.

    Article  CAS  Google Scholar 

  52. Ward DM, Vaughn MB, Shiflett SL, White PL, Pollock AL, Hill J et al. The role of LIP5 and CHMP5 in multivesicular body formation and HIV-1 budding in mammalian cells. J Biol Chem 2005; 280: 10548–10555.

    Article  CAS  Google Scholar 

  53. Yin X, Cong X, Yan M, Zhang DE . Deficiency of a potential 3p21.3 tumor suppressor gene UBE1L (UBA7) does not accelerate lung cancer development in K-rasLA2 mice. Lung Cancer 2009; 63: 194–200.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by start-up funds from the LSU-Health Science Center School of Medicine to SD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S D Desai.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burks, J., Reed, R. & Desai, S. ISGylation governs the oncogenic function of Ki-Ras in breast cancer. Oncogene 33, 794–803 (2014). https://doi.org/10.1038/onc.2012.633

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.633

Keywords

This article is cited by

Search

Quick links