Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Aurora kinase A mediates epithelial ovarian cancer cell migration and adhesion

Abstract

Aurora kinase A (AURKA) localizes to centrosomes and mitotic spindles where it mediates mitotic progression and chromosomal stability. Overexpression of AURKA is common in cancer, resulting in acquisition of alternate non-mitotic functions. In the current study, we identified a novel role for AURKA in regulating ovarian cancer cell dissemination and evaluated the efficacy of an AURKA-selective small molecule inhibitor, alisertib (MLN8237), as a single agent and combined with paclitaxel using an orthotopic xenograft model of epithelial ovarian cancer (EOC). Ovarian carcinoma cell lines were used to evaluate the effects of AURKA inhibition and overexpression on migration and adhesion. Pharmacological or RNA interference-mediated inhibition of AURKA significantly reduced ovarian carcinoma cell migration and adhesion and the activation-associated phosphorylation of the cytoskeletal regulatory protein SRC at tyrosine 416 (pSRCY416). Conversely, enforced expression of AURKA resulted in increased migration, adhesion and activation of SRC in cultured cells. In vivo tumor growth and dissemination were inhibited by alisertib treatment as a single agent. Moreover, combination of alisertib with paclitaxel, an agent commonly used in treatment of EOC, resulted in more potent inhibition of tumor growth and dissemination compared with either drug alone. Taken together, these findings support a role for AURKA in EOC dissemination by regulating migration and adhesion. They also point to the potential utility of combining AURKA inhibitors with taxanes as a therapeutic strategy for the treatment of EOC patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T et al. Cancer statistics, 2008. CA Cancer J Clin 2008; 58: 71–96.

    Article  PubMed  Google Scholar 

  2. Gautschi O, Heighway J, Mack PC, Purnell PR, Lara PN, Gandara DR . Aurora kinases as anticancer drug targets. Clin Cancer Res 2008; 14: 1639–1648.

    Article  CAS  PubMed  Google Scholar 

  3. Keen N, Taylor S . Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer 2004; 4: 927–936.

    Article  CAS  PubMed  Google Scholar 

  4. Marumoto T, Honda S, Hara T, Nitta M, Hirota T, Kohmura E et al. Aurora-A kinase maintains the fidelity of early and late mitotic events in HeLa cells. J Biol Chem 2003; 278: 51786–51795.

    Article  CAS  PubMed  Google Scholar 

  5. Gritsko TM, Coppola D, Paciga JE, Yang L, Sun M, Shelley SA et al. Activation and overexpression of centrosome kinase BTAK/Aurora-A in human ovarian cancer. Clin Cancer Res 2003; 9: 1420–1426.

    CAS  PubMed  Google Scholar 

  6. Hsu LC, Kapali M, DeLoia JA, Gallion HH . Centrosome abnormalities in ovarian cancer. Int J Cancer 2005; 113: 746–751.

    Article  CAS  PubMed  Google Scholar 

  7. Lassmann S, Shen Y, Jutting U, Wiehle P, Walch A, Gitsch G et al. Predictive value of Aurora-A/STK15 expression for late stage epithelial ovarian cancer patients treated by adjuvant chemotherapy. Clin Cancer Res 2007; 13: 4083–4091.

    Article  CAS  PubMed  Google Scholar 

  8. Tanner MM, Grenman S, Koul A, Johannsson O, Meltzer P, Pejovic T et al. Frequent amplification of chromosomal region 20q12-q13 in ovarian cancer. Clin Cancer Res 2000; 6: 1833–1839.

    CAS  PubMed  Google Scholar 

  9. Chung CM, Man C, Jin Y, Jin C, Guan XY, Wang Q et al. Amplification and overexpression of aurora kinase A (AURKA) in immortalized human ovarian epithelial (HOSE) cells. Mol Carcinog 2005; 43: 165–174.

    Article  CAS  PubMed  Google Scholar 

  10. Hu W, Kavanagh JJ, Deaver M, Johnston DA, Freedman RS, Verschraegen CF et al. Frequent overexpression of STK15/Aurora-A/BTAK and chromosomal instability in tumorigenic cell cultures derived from human ovarian cancer. Oncol Res 2005; 15: 49–57.

    Article  CAS  PubMed  Google Scholar 

  11. Lassus H, Staff S, Leminen A, Isola J, Butzow R . Aurora-A overexpression and aneuploidy predict poor outcome in serous ovarian carcinoma. Gynecol Oncol 2011; 120: 11–17.

    Article  CAS  PubMed  Google Scholar 

  12. Landen CN, Lin YG, Immaneni A, Deavers MT, Merritt WM, Spannuth WA et al. Overexpression of the centrosomal protein Aurora-A kinase is associated with poor prognosis in epithelial ovarian cancer patients. Clin Cancer Res 2007; 13: 4098–4104.

    Article  CAS  PubMed  Google Scholar 

  13. Guan Z, Wang XR, Zhu XF, Huang XF, Xu J, Wang LH et al. Aurora-A, a negative prognostic marker, increases migration and decreases radiosensitivity in cancer cells. Cancer Res 2007; 67: 10436–10444.

    Article  CAS  PubMed  Google Scholar 

  14. Reiter R, Gais P, Jutting U, Steuer-Vogt MK, Pickhard A, Bink K et al. Aurora kinase A messenger RNA overexpression is correlated with tumor progression and shortened survival in head and neck squamous cell carcinoma. Clin Cancer Res 2006; 12: 5136–5141.

    Article  CAS  PubMed  Google Scholar 

  15. Tong T, Zhong Y, Kong J, Dong L, Song Y, Fu M et al. Overexpression of Aurora-A contributes to malignant development of human esophageal squamous cell carcinoma. Clin Cancer Res 2004; 10: 7304–7310.

    Article  CAS  PubMed  Google Scholar 

  16. Wan XB, Long ZJ, Yan M, Xu J, Xia LP, Liu L et al. Inhibition of Aurora-A suppresses epithelial-mesenchymal transition and invasion by down-regulating MAPK in nasopharyngeal carcinoma cells. Carcinogenesis 2008; 29: 1930–1937.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang H, Chen X, Jin Y, Liu B, Zhou L . Overexpression of Aurora-A promotes laryngeal cancer progression by enhancing invasive ability and chromosomal instability. Eur Arch Otorhinolaryngol 2012; 269: 607–614.

    Article  PubMed  Google Scholar 

  18. Wan XB, Long ZJ, Yan M, Xu J, Xia LP, Liu L et al. Inhibition of Aurora-A suppresses epithelial-mesenchymal transition and invasion by downregulating MAPK in nasopharyngeal carcinoma cells. Carcinogenesis 2008; 29: 1930–1937.

    Article  CAS  PubMed  Google Scholar 

  19. Tatsuka M, Sato S, Kitajima S, Suto S, Kawai H, Miyauchi M et al. Overexpression of Aurora-A potentiates HRAS-mediated oncogenic transformation and is implicated in oral carcinogenesis. Oncogene 2005; 24: 1122–1127.

    Article  CAS  PubMed  Google Scholar 

  20. Yang H, He L, Kruk P, Nicosia SV, Cheng JQ . Aurora-A induces cell survival and chemoresistance by activation of Akt through a p53-dependent manner in ovarian cancer cells. Int J Cancer 2006; 119: 2304–2312.

    Article  CAS  PubMed  Google Scholar 

  21. Wu JC, Chen TY, Yu CT, Tsai SJ, Hsu JM, Tang MJ et al. Identification of V23RalA-Ser194 as a critical mediator for Aurora-A-induced cellular motility and transformation by small pool expression screening. J Biol Chem 2005; 280: 9013–9022.

    Article  CAS  PubMed  Google Scholar 

  22. Yeatman TJ . A renaissance for SRC. Nat Rev Cancer 2004; 4: 470–480.

    Article  CAS  PubMed  Google Scholar 

  23. O’Neill GM, Seo S, Serebriiskii IG, Lessin SR, Golemis EA . A new central scaffold for metastasis: parsing HEF1/Cas-L/NEDD9. Cancer Res 2007; 67: 8975–8979.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pugacheva EN, Golemis EA . HEF1-aurora A interactions: points of dialog between the cell cycle and cell attachment signaling networks. Cell Cycle 2006; 5: 384–391.

    Article  CAS  PubMed  Google Scholar 

  25. Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P et al. LKB1 modulates lung cancer differentiation and metastasis. Nature 2007; 448: 807–810.

    Article  CAS  PubMed  Google Scholar 

  26. Kim M, Gans JD, Nogueira C, Wang A, Paik JH, Feng B et al. Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell 2006; 125: 1269–1281.

    Article  CAS  PubMed  Google Scholar 

  27. Pugacheva EN, Golemis EA . The focal adhesion scaffolding protein HEF1 regulates activation of the Aurora-A and Nek2 kinases at the centrosome. Nat Cell Biol 2005; 7: 937–946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mortlock A, Keen NJ, Jung FH, Heron NM, Foote KM, Wilkinson R et al. Progress in the development of selective inhibitors of Aurora kinases. Curr Top Med Chem 2005; 5: 199–213.

    Article  CAS  PubMed  Google Scholar 

  29. Manfredi MG, Ecsedy JA, Meetze KA, Balani SK, Burenkova O, Chen W et al. Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase. Proc Natl Acad Sci USA 2007; 104: 4106–4111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Manfredi MG, Ecsedy JA, Chakravarty A, Silverman L, Zhang M, Hoar KM et al. Characterization of Alisertib (MLN8237), an investigational small-molecule inhibitor of aurora A kinase using novel in vivo pharmacodynamic assays. Clin Cancer Res 2011; 17: 7614–7624.

    Article  CAS  PubMed  Google Scholar 

  31. Tikhmyanova N, Little JL, Golemis EA . CAS proteins in normal and pathological cell growth control. Cell Mol Life Sci 2010; 67: 1025–1048.

    Article  CAS  PubMed  Google Scholar 

  32. Feki A, Berardi P, Bellingan G, Major A, Krause KH, Petignat P et al. Dissemination of intraperitoneal ovarian cancer: Discussion of mechanisms and demonstration of lymphatic spreading in ovarian cancer model. Crit Rev Oncol Hematol 2009; 72: 1–9.

    Article  PubMed  Google Scholar 

  33. Guarino M . Src signaling in cancer invasion. J Cell Physiol 2010; 223: 14–26.

    CAS  PubMed  Google Scholar 

  34. Anand S, Penrhyn-Lowe AR, Venkitaraman AR . Aurora-A amplificaiton overrides the mitotic spindle assembly checkpoint, inducing resistance to taxol. Cancer Cell 2003; 3: 51–62.

    Article  CAS  PubMed  Google Scholar 

  35. Hata T, Furukawa T, Sunamura M, Egawa S, Motoi F, Ohmura N et al. RNA interference targeting aurora kinase a suppresses tumor growth and enhances the taxane chemosensitivity in human pancreatic cancer cells. Cancer Res 2005; 65: 2899–2905.

    Article  CAS  PubMed  Google Scholar 

  36. Mazumdar A, Henderson YC, El-Naggar AK, Sen S, Clayman GL . Aurora kinase A inhibition and paclitaxel as targeted combination therapy for head and neck squamous cell carcinoma. Head Neck 2009; 31: 625–634.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shimomura T, Hasako S, Nakatsuru Y, Mita T, Ichikawa K, Kodera T et al. MK-5108, a highly selective Aurora-A kinase inhibitor, shows antitumor activity alone and in combination with docetaxel. Mol Cancer Ther 2010; 9: 157–166.

    Article  CAS  PubMed  Google Scholar 

  38. Tanaka E, Hashimoto Y, Ito T, Kondo K, Higashiyama M, Tsunoda S et al. The suppression of aurora-A/STK15/BTAK expression enhances chemosensitivity to docetaxel in human esophageal squamous cell carcinoma. Clin Cancer Res 2007; 13: 1331–1340.

    Article  CAS  PubMed  Google Scholar 

  39. Wysong DR, Chakravarty A, Hoar K, Ecsedy JA . The inhibition of Aurora A abrogates the mitotic delay induced by microtubule perturbing agents. Cell Cycle 2009; 8: 876–888.

    Article  CAS  PubMed  Google Scholar 

  40. Matsuo K, Eno ML, Im DD, Rosenshein NB . Chemotherapy time interval and development of platinum and taxane resistance in ovarian, fallopian, and peritoneal carcinomas. Arch Gynecol Obstet 2010; 281: 325–328.

    Article  CAS  PubMed  Google Scholar 

  41. Chou TC . Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 2006; 58: 621–681.

    Article  CAS  PubMed  Google Scholar 

  42. Luker KE, Luker GD . Applications of bioluminescence imaging to antiviral research and therapy: multiple luciferase enzymes and quantitation. Antiviral Res 2008; 78: 179–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lin YG, Immaneni A, Merritt WM, Mangala LS, Kim SW, Shahzad MM et al. Targeting aurora kinase with MK-0457 inhibits ovarian cancer growth. Clin Cancer Res 2008; 14: 5437–5446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Harrington EA, Bebbington D, Moore J, Rasmussen RK, Ajose-Adeogun AO, Nakayama T et al. VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nature 2004; 10: 262–267.

    CAS  Google Scholar 

  45. Payton M, Bush TL, Chung G, Ziegler B, Eden P, McElroy P et al. Preclinical evaluation of AMG 900, a novel potent and highly selective pan-aurora kinase inhibitor with activity in taxane-resistant tumor cell lines. Cancer Res 2010; 70: 9846–9854.

    Article  CAS  PubMed  Google Scholar 

  46. Komlodi-Pasztor E, Sackett DL, Fojo AT . Inhibitors targeting mitosis: tales of how great drugs against a promising target were brought down by a flawed rationale. Clin Cancer Res 2012; 18: 51–63.

    Article  CAS  PubMed  Google Scholar 

  47. Huck JJ, Zhang M, McDonald A, Bowman D, Hoar KM, Stringer B et al. MLN8054, an inhibitor of Aurora A kinase, induces senescence in human tumor cells both in vitro and in vivo. Mol Cancer Res 2010; 8: 373–384.

    Article  CAS  PubMed  Google Scholar 

  48. Ratushny V, Pathak HB, Beeharry N, Tikhmyanova N, Xiao F, Li T et al. Dual inhibition of SRC and Aurora kinases induces postmitotic attachment defects and cell death. Oncogene 2012; 31: 1217–1227.

    Article  CAS  PubMed  Google Scholar 

  49. Tan DS, Agarwal R, Kaye SB . Mechanisms of transcoelomic metastasis in ovarian cancer. Lancet Oncol 2006; 7: 925–934.

    Article  PubMed  Google Scholar 

  50. Swift S, Lorens J, Achacoso P, Nolan GP . Rapid Production of Retroviruses for Efficient Gene Delivery to Mammalian Cells Using 293T Cell–Based Systems. Current Protocols in Immunology. John Wiley & Sons, Inc, 2001.

    Google Scholar 

  51. Do TV, Symowicz JC, Berman DM, Liotta LA, Petricoin EF, Stack MS et al. Lysophosphatidic acid down-regulates stress fibers and up-regulates pro-matrix metalloproteinase-2 activation in ovarian cancer cells. Mol Cancer Res 2007; 5: 121–131.

    Article  CAS  PubMed  Google Scholar 

  52. Connolly DC, Hensley HH . Xenograft and transgenic mouse models of epithelial ovarian cancer and non-invasive imaging modalities to monitor ovarian tumor growth in situ: applications in evaluating novel therapeutic agents. Curr Protoc Pharmacol 2009; 45: 14.2.1–.2.36.

    Google Scholar 

  53. Connolly DC, Bao R, Nikitin AY, Stephens KC, Poole TW, Hua X et al. Female mice chimeric for expression of the simian virus 40 TAg under control of the MISIIR promoter develop epithelial ovarian cancer. Cancer Res 2003; 63: 1389–1397.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Dr Maureen Murphy and Dr Timothy Yen for helpful discussions and critical review of this manuscript. We also thank Dr Maureen Murphy for providing access to the Guava EasyCyte system, and Dr Greg Enders for providing access to the Nikon Eclipse microscope. This work was supported by R01 CA136596, Tobacco Settlement funding from the State of Pennsylvania and Fox Chase Cancer Center via institutional support of the Keystone Program in Personalized Risk and Prevention (to DCC); Ovarian Cancer Research Fund Program of Excellence Award (to TVD); Ovarian SPORE P50 CA083638 (Project 4 to DCC, AKG and EAG and Pilot Award to TVD); R01 CA63366 (to EAG); R01 CA140323 (to AKG); and the Fox Chase Cancer Center Core Grant NCI P30 CA006927. The following Fox Chase Cancer Facilities were used: Laboratory Animal, Transgenic, Cell Culture, Biological Imaging, Histopathology, Biosample Repository and Biostatistics and Bioinformatics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D C Connolly.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Do, TV., Xiao, F., Bickel, L. et al. Aurora kinase A mediates epithelial ovarian cancer cell migration and adhesion. Oncogene 33, 539–549 (2014). https://doi.org/10.1038/onc.2012.632

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.632

Keywords

This article is cited by

Search

Quick links