Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The cancer biology of whole-chromosome instability

Abstract

One form of chromosome instability (CIN), the recurrent missegregation of whole chromosomes during cell division (W-CIN), leads to aneuploidy. Although W-CIN is a hallmark of most cancers, mutations in genes involved in chromosome segregation are exceedingly rare. We discuss an oncogene-induced mitotic stress model that provides a mechanistic framework to explain this paradox. We also review the tumor-promoting and tumor-suppressing consequences of W-CIN. Importantly, we do this in the context of cancer as a complex systemic disease, rather than as a simple linearly progressing disorder that arises from a single abnormal cell population. Accordingly, we highlight the often neglected effects of W-CIN on key non-cell-autonomous entities, such as the immune system and the tumor microenvironment. Distinct tissue-specific susceptibilities to W-CIN-induced tumorigenesis and the clinical implications of W-CIN are also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Holland AJ, Cleveland DW . Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol 2009; 10: 478–487.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Schvartzman JM, Sotillo R, Benezra R . Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nat Rev Cancer 2010; 10: 102–115.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Thompson SL, Bakhoum SF, Compton DA . Mechanisms of chromosomal instability. Curr Biol 2010; 20: R285–R295.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ricke RM, Van Ree JH, Van Deursen JM . Whole chromosome instability and cancer: a complex relationship. Trends Genet 2008; 24: 457–466.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gordon DJ, Resio B, Pellman D . Causes and consequences of aneuploidy in cancer. Nat Rev Genet 2012; 13: 189–203.

    CAS  PubMed  Google Scholar 

  6. Duensing A, Duensing S . Centrosomes, polyploidy and cancer. Adv Exp Med Biol 2010; 676: 93–103.

    CAS  PubMed  Google Scholar 

  7. Oliveira RA, Nasmyth K . Getting through anaphase: splitting the sisters and beyond. Biochem Soc Trans 2010; 38: 1639–1644.

    CAS  PubMed  Google Scholar 

  8. Solomon DA, Kim T, Diaz-Martinez LA, Fair J, Elkahloun AG, Harris BT et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science 2011; 333: 1039–1043.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Malumbres M . Oncogene-induced mitotic stress: p53 and pRb get mad too. Cancer Cell 2011; 19: 691–692.

    CAS  PubMed  Google Scholar 

  10. Sherr CJ, McCormick F . The RB and p53 pathways in cancer. Cancer Cell 2002; 2: 103–112.

    CAS  PubMed  Google Scholar 

  11. Saavedra HI, Fukasawa K, Conn CW, Stambrook PJ . MAPK mediates RAS-induced chromosome instability. J Biol Chem 1999; 274: 38083–38090.

    CAS  PubMed  Google Scholar 

  12. Nelsen CJ, Kuriyama R, Hirsch B, Negron VC, Lingle WL, Goggin MM et al. Short term cyclin D1 overexpression induces centrosome amplification, mitotic spindle abnormalities, and aneuploidy. J Biol Chem 2005; 280: 768–776.

    CAS  PubMed  Google Scholar 

  13. Kamata T, Hussain J, Giblett S, Hayward R, Marais R, Pritchard C . BRAF inactivation drives aneuploidy by deregulating CRAF. Cancer Res 2010; 70: 8475–8486.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cui Y, Borysova MK, Johnson JO, Guadagno TM . Oncogenic B-Raf(V600E) induces spindle abnormalities, supernumerary centrosomes, and aneuploidy in human melanocytic cells. Cancer Res 2010; 70: 675–684.

    CAS  PubMed  Google Scholar 

  15. Coschi CH, Martens AL, Ritchie K, Francis SM, Chakrabarti S, Berube NG et al. Mitotic chromosome condensation mediated by the retinoblastoma protein is tumor-suppressive. Genes Dev 2010; 24: 1351–1363.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Van Harn T, Foijer F, Van Vugt M, Banerjee R, Yang F, Oostra A et al. Loss of Rb proteins causes genomic instability in the absence of mitogenic signaling. Genes Dev 2010; 24: 1377–1388.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Manning AL, Longworth MS, Dyson NJ . Loss of pRB causes centromere dysfunction and chromosomal instability. Genes Dev 2010; 24: 1364–1376.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fukasawa K, Choi T, Kuriyama R, Rulong S, Vande Woude GF . Abnormal centrosome amplification in the absence of p53. Science 1996; 271: 1744–1747.

    CAS  PubMed  Google Scholar 

  19. Hernando E, Nahle Z, Juan G, Diaz-Rodriguez E, Alaminos M, Hemann M et al. Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 2004; 430: 797–802.

    CAS  PubMed  Google Scholar 

  20. Sotillo R, Hernando E, Diaz-Rodriguez E, Teruya-Feldstein J, Cordon-Cardo C, Lowe SW et al. Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 2007; 11: 9–23.

    CAS  PubMed  Google Scholar 

  21. Schvartzman JM, Duijf PH, Sotillo R, Coker C, Benezra R . Mad2 is a critical mediator of the chromosome instability observed upon Rb and p53 pathway inhibition. Cancer Cell 2011; 19: 701–714.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kabeche L, Compton DA . Checkpoint-Independent Stabilization of Kinetochore-Microtubule Attachments by Mad2 in Human Cells. Curr Biol 2012; 22: 638–644.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu G, Parant JM, Lang G, Chau P, Chavez-Reyes A, El-Naggar AK et al. Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat Genet 2004; 36: 63–68.

    CAS  PubMed  Google Scholar 

  24. Barboza JA, Liu G, Ju Z, El-Naggar AK, Lozano G . p21 delays tumor onset by preservation of chromosomal stability. Proc Natl Acad Sci USA 2006; 103: 19842–19847.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mukherjee M, Ge G, Zhang N, Huang E, Nakamura LV, Minor M et al. Separase loss of function cooperates with the loss of p53 in the initiation and progression of T- and B-cell lymphoma, leukemia and aneuploidy in mice. PLoS One 2011; 6: e22167.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Celton-Morizur S, Desdouets C . Polyploidization of liver cells. Adv Exp Med Biol 2010; 676: 123–135.

    CAS  PubMed  Google Scholar 

  27. Duncan AW, Taylor MH, Hickey RD, Hanlon Newell AE, Lenzi ML, Olson SB et al. The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature 2010; 467: 707–710.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Weaver BA, Silk AD, Montagna C, Verdier-Pinard P, Cleveland DW . Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 2007; 11: 25–36.

    CAS  PubMed  Google Scholar 

  29. Duijf PH, Schultz N, Benezra R . Cancer cells preferentially lose small chromosomes. Int J Cancer (e-pub ahead of print 5 November 2012; doi:10.1002/ijc.27924).

    PubMed  PubMed Central  Google Scholar 

  30. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  31. Lengauer C, Kinzler KW, Vogelstein B . Genetic instabilities in human cancers. Nature 1998; 396: 643–649.

    CAS  PubMed  Google Scholar 

  32. Pavelka N, Rancati G, Zhu J, Bradford WD, Saraf A, Florens L et al. Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature 2010; 468: 321–325.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rodriguez-Paredes M, Esteller M . Cancer epigenetics reaches mainstream oncology. Nat Med 2011; 17: 330–339.

    CAS  PubMed  Google Scholar 

  34. Jones PA, Baylin SB . The epigenomics of cancer. Cell 2007; 128: 683–692.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Visconti R, Grieco D . New insights on oxidative stress in cancer. Curr Opin Drug Discov Devel 2009; 12: 240–245.

    CAS  PubMed  Google Scholar 

  36. Li M, Fang X, Baker DJ, Guo L, Gao X, Wei Z et al. The ATM-p53 pathway suppresses aneuploidy-induced tumorigenesis. Proc Natl Acad Sci USA 2010; 107: 14188–14193.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang Z, Yu R, Melmed S . Mice lacking pituitary tumor transforming gene show testicular and splenic hypoplasia, thymic hyperplasia, thrombocytopenia, aberrant cell cycle progression, and premature centromere division. Mol Endocrinol 2001; 15: 1870–1879.

    CAS  PubMed  Google Scholar 

  38. Garcia-Higuera I, Manchado E, Dubus P, Canamero M, Mendez J, Moreno S et al. Genomic stability and tumour suppression by the APC/C cofactor Cdh1. Nat Cell Biol 2008; 10: 802–811.

    PubMed  Google Scholar 

  39. Nguyen HG, Makitalo M, Yang D, Chinnappan D, Hilaire C, Ravid K . Deregulated Aurora-B induced tetraploidy promotes tumorigenesis. FASEB J 2009; 23: 2741–2748.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Loeb LA . A mutator phenotype in cancer. Cancer Res 2001; 61: 3230–3239.

    CAS  PubMed  Google Scholar 

  41. Sheltzer JM, Blank HM, Pfau SJ, Tange Y, George BM, Humpton TJ et al. Aneuploidy drives genomic instability in yeast. Science 2011; 333: 1026–1030.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Torres EM, Sokolsky T, Tucker CM, Chan LY, Boselli M, Dunham MJ et al. Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 2007; 317: 916–924.

    CAS  PubMed  Google Scholar 

  43. Williams BR, Prabhu VR, Hunter KE, Glazier CM, Whittaker CA, Housman DE et al. Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 2008; 322: 703–709.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gogvadze V, Orrenius S, Zhivotovsky B . Mitochondria in cancer cells: what is so special about them? Trends Cell Biol 2008; 18: 165–173.

    CAS  PubMed  Google Scholar 

  45. Hayashi MT, Cesare AJ, Fitzpatrick JA, Lazzerini-Denchi E, Karlseder J . A telomere-dependent DNA damage checkpoint induced by prolonged mitotic arrest. Nat Struct Mol Biol 2012; 19: 387–394.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Janssen A, Van der Burg M, Szuhai K, Kops GJ, Medema RH . Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 2011; 333: 1895–1898.

    CAS  PubMed  Google Scholar 

  47. Guerrero AA, Gamero MC, Trachana V, Futterer A, Pacios-Bras C, Diaz-Concha NP et al. Centromere-localized breaks indicate the generation of DNA damage by the mitotic spindle. Proc Natl Acad Sci USA 2010; 107: 4159–4164.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, Pan Y et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 2012; 482: 53–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 2011; 144: 27–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu P, Erez A, Nagamani SC, Dhar SU, Kolodziejska KE, Dharmadhikari AV et al. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 2011; 146: 889–903.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Molenaar JJ, Koster J, Zwijnenburg DA, Van Sluis P, Valentijn LJ, Van der Ploeg I et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 2012; 483: 589–593.

    CAS  PubMed  Google Scholar 

  52. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J et al. The landscape of somatic copy-number alteration across human cancers. Nature 2010; 463: 899–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. TCGARN, Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474: 609–615.

    Google Scholar 

  54. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012; 486: 346–352.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011; 475: 101–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Baker DJ, Jeganathan KB, Malureanu L, Perez-Terzic C, Terzic A, Van Deursen JM . Early aging-associated phenotypes in Bub3/Rae1 haploinsufficient mice. J Cell Biol 2006; 172: 529–540.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Schliekelman M, Cowley DO, O’Quinn R, Oliver TG, Lu L, Salmon ED et al. Impaired Bub1 function in vivo compromises tension-dependent checkpoint function leading to aneuploidy and tumorigenesis. Cancer Res 2009; 69: 45–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hasle H, Clemmensen IH, Mikkelsen M . Risks of leukaemia and solid tumours in individuals with Down's syndrome. Lancet 2000; 355: 165–169.

    CAS  PubMed  Google Scholar 

  59. Satge D, Sasco AJ, Carlsen NL, Stiller CA, Rubie H, Hero B et al. A lack of neuroblastoma in Down syndrome: a study from 11 European countries. Cancer Res 1998; 58: 448–452.

    CAS  PubMed  Google Scholar 

  60. Yang Q, Rasmussen SA, Friedman JM . Mortality associated with Down's syndrome in the USA from 1983 to 1997: a population-based study. Lancet 2002; 359: 1019–1025.

    PubMed  Google Scholar 

  61. Swerdlow AJ, Schoemaker MJ, Higgins CD, Wright AF, Jacobs PA . Cancer incidence and mortality in men with Klinefelter syndrome: a cohort study. J Natl Cancer Inst 2005; 97: 1204–1210.

    PubMed  Google Scholar 

  62. Hasle H, Mellemgaard A, Nielsen J, Hansen J . Cancer incidence in men with Klinefelter syndrome. Br J Cancer 1995; 71: 416–420.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Torres EM, Dephoure N, Panneerselvam A, Tucker CM, Whittaker CA, Gygi SP et al. Identification of aneuploidy-tolerating mutations. Cell 2010; 143: 71–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lakovschek IC, Streubel B, Ulm B . Natural outcome of trisomy 13, trisomy 18, and triploidy after prenatal diagnosis. Am J Med Genet A 2011; 155A: 2626–2633.

    PubMed  Google Scholar 

  65. Grivennikov SI, Greten FR, Karin M . Immunity, inflammation, and cancer. Cell 2010; 140: 883–899.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD . Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002; 3: 991–998.

    CAS  PubMed  Google Scholar 

  67. Chang CC, Ogino T, Mullins DW, Oliver JL, Yamshchikov GV, Bandoh N et al. Defective human leukocyte antigen class I-associated antigen presentation caused by a novel beta2-microglobulin loss-of-function in melanoma cells. J Biol Chem 2006; 281: 18763–18773.

    CAS  PubMed  Google Scholar 

  68. Sanda MG, Restifo NP, Walsh JC, Kawakami Y, Nelson WG, Pardoll DM et al. Molecular characterization of defective antigen processing in human prostate cancer. J Natl Cancer Inst 1995; 87: 280–285.

    CAS  PubMed  Google Scholar 

  69. Khong HT, Restifo NP . Natural selection of tumor variants in the generation of ‘tumor escape’ phenotypes. Nat Immunol 2002; 3: 999–1005.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Schreiber RD, Old LJ, Smyth MJ . Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011; 331: 1565–1570.

    CAS  PubMed  Google Scholar 

  71. DuPage M, Mazumdar C, Schmidt LM, Cheung AF, Jacks T . Expression of tumour-specific antigens underlies cancer immunoediting. Nature 2012; 482: 405–409.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Yamada HY, Yao Y, Wang X, Zhang Y, Huang Y, Dai W et al. Haploinsufficiency of SGO1 results in deregulated centrosome dynamics, enhanced chromosomal instability and colon tumorigenesis. Cell Cycle 2012; 11: 479–488.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E et al. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 1996; 87: 803–809.

    CAS  PubMed  Google Scholar 

  74. Chulada PC, Thompson MB, Mahler JF, Doyle CM, Gaul BW, Lee C et al. Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice. Cancer Res 2000; 60: 4705–4708.

    CAS  PubMed  Google Scholar 

  75. Rodier F, Coppe JP, Patil CK, Hoeijmakers WA, Munoz DP, Raza SR et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 2009; 11: 973–979.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zheng L, Dai H, Zhou M, Li M, Singh P, Qiu J et al. Fen1 mutations result in autoimmunity, chronic inflammation and cancers. Nat Med 2007; 13: 812–819.

    CAS  PubMed  Google Scholar 

  77. Joyce JA, Pollard JW . Microenvironmental regulation of metastasis. Nat Rev Cancer 2009; 9: 239–252.

    CAS  PubMed  Google Scholar 

  78. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A . Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 2009; 30: 1073–1081.

    CAS  PubMed  Google Scholar 

  79. Lonkar P, Dedon PC . Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates. Int J Cancer 2011; 128: 1999–2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Aivaliotis IL, Pateras IS, Papaioannou M, Glytsou C, Kontzoglou K, Johnson EO et al. How do cytokines trigger genomic instability? J Biomed Biotechnol 2012; 2012: 536761.

    PubMed  PubMed Central  Google Scholar 

  81. Sotillo R, Schvartzman JM, Socci ND, Benezra R . Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal. Nature 2010; 464: 436–440.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Galluzzi L, Vanden Berghe T, Vanlangenakker N, Buettner S, Eisenberg T, Vandenabeele P et al. Programmed necrosis from molecules to health and disease. Int Rev Cell Mol Biol 2011; 289: 1–35.

    CAS  PubMed  Google Scholar 

  83. Kimmelman AC . The dynamic nature of autophagy in cancer. Genes Dev 2011; 25: 1999–2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. White E . Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 2012; 12: 401–410.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Baker DJ, Jeganathan KB, Cameron JD, Thompson M, Juneja S, Kopecka A et al. BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat Genet 2004; 36: 744–749.

    CAS  PubMed  Google Scholar 

  86. Babu JR, Jeganathan KB, Baker DJ, Wu X, Kang-Decker N, Van Deursen JM . Rae1 is an essential mitotic checkpoint regulator that cooperates with Bub3 to prevent chromosome missegregation. J Cell Biol 2003; 160: 341–353.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Chesnokova V, Kovacs K, Castro AV, Zonis S, Melmed S . Pituitary hypoplasia in Pttg−/− mice is protective for Rb+/− pituitary tumorigenesis. Mol Endocrinol 2005; 19: 2371–2379.

    CAS  PubMed  Google Scholar 

  88. Li M, Fang X, Wei Z, York JP, Zhang P . Loss of spindle assembly checkpoint-mediated inhibition of Cdc20 promotes tumorigenesis in mice. J Cell Biol 2009; 185: 983–994.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Andreassen PR, Lohez OD, Lacroix FB, Margolis RL . Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol Biol Cell 2001; 12: 1315–1328.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Rieder CL, Maiato H . Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell 2004; 7: 637–651.

    CAS  PubMed  Google Scholar 

  91. Zhang D, Shimizu T, Araki N, Hirota T, Yoshie M, Ogawa K et al. Aurora A overexpression induces cellular senescence in mammary gland hyperplastic tumors developed in p53-deficient mice. Oncogene 2008; 27: 4305–4314.

    CAS  PubMed  Google Scholar 

  92. Bitomsky N, Hofmann TG . Apoptosis and autophagy: Regulation of apoptosis by DNA damage signalling - roles of p53, p73 and HIPK2. FEBS J 2009; 276: 6074–6083.

    CAS  PubMed  Google Scholar 

  93. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005; 434: 864–870.

    CAS  PubMed  Google Scholar 

  94. Vakifahmetoglu H, Olsson M, Zhivotovsky B . Death through a tragedy: mitotic catastrophe. Cell Death Differ 2008; 15: 1153–1162.

    CAS  PubMed  Google Scholar 

  95. Manchado E, Guillamot M, Malumbres M . Killing cells by targeting mitosis. Cell Death Differ 2012; 19: 369–377.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Gascoigne KE, Taylor SS . Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 2008; 14: 111–122.

    CAS  PubMed  Google Scholar 

  97. Terrano DT, Upreti M, Chambers TC . Cyclin-dependent kinase 1-mediated Bcl-xL/Bcl-2 phosphorylation acts as a functional link coupling mitotic arrest and apoptosis. Mol Cell Biol 2010; 30: 640–656.

    CAS  PubMed  Google Scholar 

  98. Thompson SL, Compton DA . Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J Cell Biol 2010; 188: 369–381.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Mikule K, Delaval B, Kaldis P, Jurcyzk A, Hergert P, Doxsey S . Loss of centrosome integrity induces p38-p53-p21-dependent G1-S arrest. Nat Cell Biol 2007; 9: 160–170.

    CAS  PubMed  Google Scholar 

  100. Lanni JS, Jacks T . Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol Cell Biol 1998; 18: 1055–1064.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Minn AJ, Boise LH, Thompson CB . Expression of Bcl-xL and loss of p53 can cooperate to overcome a cell cycle checkpoint induced by mitotic spindle damage. Genes Dev 1996; 10: 2621–2631.

    CAS  PubMed  Google Scholar 

  102. Reinhardt HC, Schumacher B . The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet 2012; 28: 128–136.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Deng Y, Chan SS, Chang S . Telomere dysfunction and tumour suppression: the senescence connection. Nat Rev Cancer 2008; 8: 450–458.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Burds AA, Lutum AS, Sorger PK . Generating chromosome instability through the simultaneous deletion of Mad2 and p53. Proc Natl Acad Sci USA 2005; 102: 11296–11301.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Greaves M, Maley CC . Clonal evolution in cancer. Nature 2012; 481: 306–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Hanahan D, Coussens LM . Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012; 21: 309–322.

    CAS  PubMed  Google Scholar 

  107. Ostrand-Rosenberg S . Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev 2008; 18: 11–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Mason SD, Joyce JA . Proteolytic networks in cancer. Trends Cell Biol 2011; 21: 228–237.

    CAS  PubMed  Google Scholar 

  109. Lewis CE, De Palma M, Naldini L . Tie2-expressing monocytes and tumor angiogenesis: regulation by hypoxia and angiopoietin-2. Cancer Res 2007; 67: 8429–8432.

    CAS  PubMed  Google Scholar 

  110. Seremet T, Brasseur F, Coulie PG . Tumor-specific antigens and immunologic adjuvants in cancer immunotherapy. Cancer J 2011; 17: 325–330.

    CAS  PubMed  Google Scholar 

  111. Granot Z, Henke E, Comen EA, King TA, Norton L, Benezra R . Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 2011; 20: 300–314.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Png KJ, Halberg N, Yoshida M, Tavazoie SF . A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature 2012; 481: 190–194.

    CAS  Google Scholar 

  113. Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z . A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 2006; 38: 1043–1048.

    CAS  PubMed  Google Scholar 

  114. Gutenberg A, Gerdes JS, Jung K, Sander B, Gunawan B, Bock HC et al. High chromosomal instability in brain metastases of colorectal carcinoma. Cancer Genet Cytogenet 2010; 198: 47–51.

    CAS  PubMed  Google Scholar 

  115. Bhattacharya A, Roy R, Snijders AM, Hamilton G, Paquette J, Tokuyasu T et al. Two distinct routes to oral cancer differing in genome instability and risk for cervical node metastasis. Clin Cancer Res 2011; 17: 7024–7034.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kreike B, Halfwerk H, Armstrong N, Bult P, Foekens JA, Veltkamp SC et al. Local recurrence after breast-conserving therapy in relation to gene expression patterns in a large series of patients. Clin Cancer Res 2009; 15: 4181–4190.

    CAS  PubMed  Google Scholar 

  117. Smid M, Hoes M, Sieuwerts AM, Sleijfer S, Zhang Y, Wang Y et al. Patterns and incidence of chromosomal instability and their prognostic relevance in breast cancer subtypes. Breast Cancer Res Treat 2011; 128: 23–30.

    CAS  PubMed  Google Scholar 

  118. Skirnisdottir I, Sorbe B, Karlsson M, Seidal T . Prognostic importance of DNA ploidy and p53 in early stages of epithelial ovarian carcinoma. Int J Oncol 2001; 19: 1295–1302.

    CAS  PubMed  Google Scholar 

  119. Warth A, Herpel E, Krysa S, Hoffmann H, Schnabel PA, Schirmacher P et al. Chromosomal instability is more frequent in metastasized than in non-metastasized pulmonary carcinoids but is not a reliable predictor of metastatic potential. Exp Mol Med 2009; 41: 349–353.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Schardt JA, Meyer M, Hartmann CH, Schubert F, Schmidt-Kittler O, Fuhrmann C et al. Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell 2005; 8: 227–239.

    CAS  PubMed  Google Scholar 

  121. Schmidt-Kittler O, Ragg T, Daskalakis A, Granzow M, Ahr A, Blankenstein TJ et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci USA 2003; 100: 7737–7742.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Stoecklein NH, Hosch SB, Bezler M, Stern F, Hartmann CH, Vay C et al. Direct genetic analysis of single disseminated cancer cells for prediction of outcome and therapy selection in esophageal cancer. Cancer Cell 2008; 13: 441–453.

    CAS  PubMed  Google Scholar 

  123. Weckermann D, Polzer B, Ragg T, Blana A, Schlimok G, Arnholdt H et al. Perioperative activation of disseminated tumor cells in bone marrow of patients with prostate cancer. J Clin Oncol 2009; 27: 1549–1556.

    PubMed  Google Scholar 

  124. McClelland SE, Burrell RA, Swanton C . Chromosomal instability: a composite phenotype that influences sensitivity to chemotherapy. Cell Cycle 2009; 8: 3262–3266.

    CAS  PubMed  Google Scholar 

  125. Duesberg P, Stindl R, Hehlmann R . Explaining the high mutation rates of cancer cells to drug and multidrug resistance by chromosome reassortments that are catalyzed by aneuploidy. Proc Natl Acad Sci USA 2000; 97: 14295–14300.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Swanton C, Nicke B, Schuett M, Eklund AC, Ng C, Li Q et al. Chromosomal instability determines taxane response. Proc Natl Acad Sci USA 2009; 106: 8671–8676.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Bedard PL, Di Leo A, Piccart-Gebhart MJ . Taxanes: optimizing adjuvant chemotherapy for early-stage breast cancer. Nat Rev Clin Oncol 2010; 7: 22–36.

    CAS  PubMed  Google Scholar 

  128. Janssen A, Kops GJ, Medema RH . Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. Proc Natl Acad Sci USA 2009; 106: 19108–19113.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Rebacz B, Larsen TO, Clausen MH, Ronnest MH, Loffler H, Ho AD et al. Identification of griseofulvin as an inhibitor of centrosomal clustering in a phenotype-based screen. Cancer Res 2007; 67: 6342–6350.

    CAS  PubMed  Google Scholar 

  130. Karna P, Rida PC, Pannu V, Gupta KK, Dalton WB, Joshi H et al. A novel microtubule-modulating noscapinoid triggers apoptosis by inducing spindle multipolarity via centrosome amplification and declustering. Cell Death Differ 2011; 18: 632–644.

    CAS  PubMed  Google Scholar 

  131. Kwon M, Godinho SA, Chandhok NS, Ganem NJ, Azioune A, Thery M et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 2008; 22: 2189–2203.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Wu G, Qiu XL, Zhou L, Zhu J, Chamberlin R, Lau J et al. Small molecule targeting the Hec1/Nek2 mitotic pathway suppresses tumor cell growth in culture and in animal. Cancer Res 2008; 68: 8393–8399.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Tang YC, Williams BR, Siegel JJ, Amon A . Identification of aneuploidy-selective antiproliferation compounds. Cell 2011; 144: 499–512.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Ishida S, Huang E, Zuzan H, Spang R, Leone G, West M et al. Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol Cell Biol 2001; 21: 4684–4699.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Polager S, Kalma Y, Berkovich E, Ginsberg D . E2Fs up-regulate expression of genes involved in DNA replication, DNA repair and mitosis. Oncogene 2002; 21: 437–446.

    CAS  PubMed  Google Scholar 

  136. Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA et al. E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev 2002; 16: 245–256.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhou Y, Mehta KR, Choi AP, Scolavino S, Zhang X . DNA damage-induced inhibition of securin expression is mediated by p53. J Biol Chem 2003; 278: 462–470.

    CAS  PubMed  Google Scholar 

  138. Oikawa T, Okuda M, Ma Z, Goorha R, Tsujimoto H, Inokuma H et al. Transcriptional control of BubR1 by p53 and suppression of centrosome amplification by BubR1. Mol Cell Biol 2005; 25: 4046–4061.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Lu LY, Wood JL, Ye L, Minter-Dykhouse K, Saunders TL, Yu X et al. Aurora A is essential for early embryonic development and tumor suppression. J Biol Chem 2008; 283: 31785–31790.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Iwanaga Y, Chi YH, Miyazato A, Sheleg S, Haller K, Peloponese JM et al. Heterozygous deletion of mitotic arrest-deficient protein 1 (MAD1) increases the incidence of tumors in mice. Cancer Res 2007; 67: 160–166.

    CAS  PubMed  Google Scholar 

  141. Michel LS, Liberal V, Chatterjee A, Kirchwegger R, Pasche B, Gerald W et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 2001; 409: 355–359.

    CAS  PubMed  Google Scholar 

  142. Lu LY, Wood JL, Minter-Dykhouse K, Ye L, Saunders TL, Yu X et al. Polo-like kinase 1 is essential for early embryonic development and tumor suppression. Mol Cell Biol 2008; 28: 6870–6876.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Ko MA, Rosario CO, Hudson JW, Kulkarni S, Pollett A, Dennis JW et al. Plk4 haploinsufficiency causes mitotic infidelity and carcinogenesis. Nat Genet 2005; 37: 883–888.

    CAS  PubMed  Google Scholar 

  144. Jeganathan K, Malureanu L, Baker DJ, Abraham SC, Van Deursen JM . Bub1 mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. J Cell Biol 2007; 179: 255–267.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Ricke RM, Jeganathan KB, Van Deursen JM . Bub1 overexpression induces aneuploidy and tumor formation through Aurora B kinase hyperactivation. J Cell Biol 2011; 193: 1049–1064.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Diaz-Rodriguez E, Sotillo R, Schvartzman JM, Benezra R . Hec1 overexpression hyperactivates the mitotic checkpoint and induces tumor formation in vivo. Proc Natl Acad Sci USA 2008; 105: 16719–16724.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Van Ree JH, Jeganathan KB, Malureanu L, Van Deursen JM . Overexpression of the E2 ubiquitin-conjugating enzyme UbcH10 causes chromosome missegregation and tumor formation. J Cell Biol 2010; 188: 83–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Janisson-Dargaud D, Durlach A, Lorenzato M, Grange F, Bernard P, Birembaut P . Aneuploidy, but not Ki-67 or EGFR expression, is associated with recurrences in basal cell carcinoma. J Cutan Pathol 2008; 35: 916–921.

    PubMed  Google Scholar 

  149. Susini T, Olivieri S, Molino C, Amunni G, Rapi S, Taddei G et al. DNA ploidy is stronger than lymph node metastasis as prognostic factor in cervical carcinoma: 10-year results of a prospective study. Int J Gynecol Cancer 2011; 21: 678–684.

    PubMed  Google Scholar 

  150. Walther A, Houlston R, Tomlinson I . Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis. Gut 2008; 57: 941–950.

    CAS  PubMed  Google Scholar 

  151. Lagarde P, Perot G, Kauffmann A, Brulard C, Dapremont V, Hostein I et al. Mitotic checkpoints and chromosome instability are strong predictors of clinical outcome in gastrointestinal stromal tumors. Clin Cancer Res 2012; 18: 826–838.

    CAS  PubMed  Google Scholar 

  152. Choi CM, Seo KW, Jang SJ, Oh YM, Shim TS, Kim WS et al. Chromosomal instability is a risk factor for poor prognosis of adenocarcinoma of the lung: Fluorescence in situ hybridization analysis of paraffin-embedded tissue from Korean patients. Lung Cancer 2009; 64: 66–70.

    PubMed  Google Scholar 

  153. Ehlers JP, Worley L, Onken MD, Harbour JW . Integrative genomic analysis of aneuploidy in uveal melanoma. Clin Cancer Res 2008; 14: 115–122.

    CAS  PubMed  Google Scholar 

  154. Sato H, Uzawa N, Takahashi K, Myo K, Ohyama Y, Amagasa T . Prognostic utility of chromosomal instability detected by fluorescence in situ hybridization in fine-needle aspirates from oral squamous cell carcinomas. BMC Cancer 2010; 10: 182.

    PubMed  PubMed Central  Google Scholar 

  155. Pinto AE, Silva GL, Pereira T, Cabrera RA, Santos JR, Leite V . S-phase fraction and ploidy as predictive markers in primary disease and recurrence of papillary thyroid carcinoma. Clin Endocrinol (Oxf) 2012; 77: 302–309.

    Google Scholar 

Download references

Acknowledgements

We thank Peter J Cook, Zvi Granot, Rozario I Thomas, Daniel Marks and Rocío Sotillo for critical reading of the manuscript. PHGD is supported by a Young Investigator Award from Alex’s Lemonade Stand Foundation and RB by the Breast Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P H G Duijf or R Benezra.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duijf, P., Benezra, R. The cancer biology of whole-chromosome instability. Oncogene 32, 4727–4736 (2013). https://doi.org/10.1038/onc.2012.616

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.616

Keywords

This article is cited by

Search

Quick links