Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ink4a/Arf−/− and HRAS(G12V) transform mouse mammary cells into triple-negative breast cancer containing tumorigenic CD49f quiescent cells

Abstract

Intratumoral heterogeneity within individual breast tumors is a well-known phenomenon that may contribute to drug resistance. This heterogeneity is dependent on several factors, such as types of oncogenic drivers and tumor precursor cells. The purpose of our study was to engineer a mouse mammary tumor model with intratumoral heterogeneity by using defined genetic perturbations. To achieve this, we used mice with knockout (–/–) of Ink4a/Arf, a tumor suppressor locus; these mice are known to be susceptible to non-mammary tumors such as fibrosarcoma. To induce mammary tumors, we retrovirally introduced an oncogene, HRAS(G12V), into Ink4a/Arf−/− mammary cells in vitro, and those cells were inoculated into syngeneic mice mammary fat pads. We observed 100% tumorigenesis. The tumors formed were negative for estrogen receptor, progesterone receptor and HER2. Further, they had pathological features similar to those of human triple-negative breast cancer (TNBC) (for example, pushing borders, central necrosis). The tumors were found to be heterogeneous and included two subpopulations: CD49f quiescent cells and CD49f+cells. Contrary to our expectation, CD49f quiescent cells had high tumor-initiating potential and CD49f+cells had relatively low tumor-initiating potential. Gene expression analysis revealed that CD49f quiescent cells overexpressed epithelial-to-mesenchymal transition-driving genes, reminiscent of tumor-initiating cells and claudin-low breast cancer. Our animal model with intratumoral heterogeneity, derived from defined genetic perturbations, allows us to test novel molecular targeted drugs in a setting that mimics the intratumoral heterogeneity of human TNBC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL et al. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 2006; 10: 529–541.

    Article  CAS  PubMed  Google Scholar 

  2. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752.

    Article  CAS  PubMed  Google Scholar 

  3. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012; 366: 883–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Reya T, Morrison SJ, Clarke MF, Weissman IL . Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–111.

    Article  CAS  PubMed  Google Scholar 

  5. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J et al. Molecular definition of breast tumor heterogeneity. Cancer Cell 2007; 11: 259–273.

    Article  CAS  PubMed  Google Scholar 

  7. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63: 5821–5828.

    CAS  PubMed  Google Scholar 

  8. Joo KM, Kim SY, Jin X, Song SY, Kong DS, Lee JI et al. Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab Invest 2008; 88: 808–815.

    Article  CAS  PubMed  Google Scholar 

  9. Vaillant F, Asselin-Labat ML, Shackleton M, Forrest NC, Lindeman GJ, Visvader JE . The mammary progenitor marker CD61/beta3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res 2008; 68: 7711–7717.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang M, Behbod F, Atkinson RL, Landis MD, Kittrell F, Edwards D et al. Identification of tumor-initiating cells in a p53-null mouse model of breast cancer. Cancer Res 2008; 68: 4674–4682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cho RW, Wang X, Diehn M, Shedden K, Chen GY, Sherlock G et al. Isolation and molecular characterization of cancer stem cells in MMTV-Wnt-1 murine breast tumors. Stem Cells 2008; 26: 364–371.

    Article  CAS  PubMed  Google Scholar 

  12. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA 2009; 106: 13820–13825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sherr CJ . The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2001; 2: 731–737.

    Article  CAS  PubMed  Google Scholar 

  14. Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA . Role of the INK4a locus in tumor suppression and cell mortality. Cell 1996; 85: 27–37.

    Article  CAS  PubMed  Google Scholar 

  15. Debies MT, Gestl SA, Mathers JL, Mikse OR, Leonard TL, Moody SE et al. Tumor escape in a Wnt1-dependent mouse breast cancer model is enabled by p19Arf/p53 pathway lesions but not p16 Ink4a loss. J Clin Invest 2008; 118: 51–63.

    Article  CAS  PubMed  Google Scholar 

  16. Seeburg PH, Colby WW, Capon DJ, Goeddel DV, Levinson AD . Biological properties of human c-Ha-ras1 genes mutated at codon 12. Nature 1984; 312: 71–75.

    Article  CAS  PubMed  Google Scholar 

  17. von Lintig FC, Dreilinger AD, Varki NM, Wallace AM, Casteel DE, Boss GR . Ras activation in human breast cancer. Breast Cancer Res Treat 2000; 62: 51–62.

    Article  CAS  PubMed  Google Scholar 

  18. Eckert LB, Repasky GA, Ulku AS, McFall A, Zhou H, Sartor CI et al. Involvement of Ras activation in human breast cancer cell signaling, invasion, and anoikis. Cancer Res 2004; 64: 4585–4592.

    Article  CAS  PubMed  Google Scholar 

  19. Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 2010; 140: 62–73.

    Article  CAS  PubMed  Google Scholar 

  20. Liao MJ, Zhang CC, Zhou B, Zimonjic DB, Mani SA, Kaba M et al. Enrichment of a population of mammary gland cells that form mammospheres and have in vivo repopulating activity. Cancer Res 2007; 67: 8131–8138.

    Article  CAS  PubMed  Google Scholar 

  21. Rakha EA, Ellis IO . Triple-negative/basal-like breast cancer: review. Pathology 2009; 41: 40–47.

    Article  PubMed  Google Scholar 

  22. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML et al. Generation of a functional mammary gland from a single stem cell. Nature 2006; 439: 84–88.

    Article  CAS  PubMed  Google Scholar 

  23. Cardiff RD . The pathology of EMT in mouse mammary tumorigenesis. J Mammary Gland Biol Neoplasia 2010; 15: 225–233.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang D, Lafortune TA, Krishnamurthy S, Esteva FJ, Cristofanilli M, Liu P et al. Epidermal growth factor receptor tyrosine kinase inhibitor reverses mesenchymal to epithelial phenotype and inhibits metastasis in inflammatory breast cancer. Clin Cancer Res 2009; 15: 6639–6648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J . Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 2008; 68: 989–997.

    Article  CAS  PubMed  Google Scholar 

  26. Iwamoto T, Bianchini G, Booser D, Qi Y, Coutant C, Shiang CY et al. Gene pathways associated with prognosis and chemotherapy sensitivity in molecular subtypes of breast cancer. J Natl Cancer Inst 2011; 103: 264–272.

    Article  CAS  PubMed  Google Scholar 

  27. Buyse M, Loi S, van’t Veer L, Viale G, Delorenzi M, Glas AM et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 2006; 98: 1183–1192.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 2005; 365: 671–679.

    Article  CAS  Google Scholar 

  29. Schmidt M, Bohm D, von Torne C, Steiner E, Puhl A, Pilch H et al. The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res 2008; 68: 5405–5413.

    Article  CAS  PubMed  Google Scholar 

  30. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D et al. Purification and unique properties of mammary epithelial stem cells. Nature 2006; 439: 993–997.

    Article  CAS  PubMed  Google Scholar 

  31. Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 2009; 15: 907–913.

    Article  CAS  PubMed  Google Scholar 

  32. Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA . Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 2002; 245: 42–56.

    Article  CAS  PubMed  Google Scholar 

  33. Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature 2008; 453: 1072–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dooley S, Delvoux B, Lahme B, Mangasser-Stephan K, Gressner AM . Modulation of transforming growth factor beta response and signaling during transdifferentiation of rat hepatic stellate cells to myofibroblasts. Hepatology 2000; 31: 1094–1106.

    Article  CAS  PubMed  Google Scholar 

  35. Cho JJ, Hocher B, Herbst H, Jia JD, Ruehl M, Hahn EG et al. An oral endothelin-A receptor antagonist blocks collagen synthesis and deposition in advanced rat liver fibrosis. Gastroenterology 2000; 118: 1169–1178.

    Article  CAS  PubMed  Google Scholar 

  36. Svegliati-Baroni G, Ridolfi F, Di Sario A, Casini A, Marucci L, Gaggiotti G et al. Insulin and insulin-like growth factor-1 stimulate proliferation and type I collagen accumulation by human hepatic stellate cells: differential effects on signal transduction pathways. Hepatology 1999; 29: 1743–1751.

    Article  CAS  PubMed  Google Scholar 

  37. Cui XS, Donehower LA . Differential gene expression in mouse mammary adenocarcinomas in the presence and absence of wild type p53. Oncogene 2000; 19: 5988–5996.

    Article  CAS  PubMed  Google Scholar 

  38. Herschkowitz JI, Zhao W, Zhang M, Usary J, Murrow G, Edwards D et al. Comparative oncogenomics identifies breast tumors enriched in functional tumor-initiating cells. Proc Natl Acad Sci USA 2012; 109: 2778–2783.

    Article  CAS  PubMed  Google Scholar 

  39. Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA 2010; 107: 15449–15454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 2007; 8: R76.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 2010; 12: R68.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bartholomeusz C, Oishi T, Saso H, Akar U, Liu P, Kondo K et al. MEK1/2 inhibitor selumetinib (AZD6244) inhibits growth of ovarian clear cell carcinoma in a PEA-15-dependent manner in a mouse xenograft model. Mol Cancer Ther 2012; 11: 360–369.

    Article  CAS  PubMed  Google Scholar 

  43. Shimizu T, Ishikawa T, Sugihara E, Kuninaka S, Miyamoto T, Mabuchi Y et al. c-MYC overexpression with loss of Ink4a/Arf transforms bone marrow stromal cells into osteosarcoma accompanied by loss of adipogenesis. Oncogene 2010; 29: 5687–5699.

    Article  CAS  PubMed  Google Scholar 

  44. Sugihara E, Shimizu T, Kojima K, Onishi N, Kai K, Ishizawa J et al. Ink4a and Arf are crucial factors in the determination of the cell of origin and the therapeutic sensitivity of Myc-induced mouse lymphoid tumor. Oncogene 2012; 31: 2849–2861.

    Article  CAS  PubMed  Google Scholar 

  45. Kitamura T, Koshino Y, Shibata F, Oki T, Nakajima H, Nosaka T et al. Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp Hematol 2003; 31: 1007–1014.

    Article  CAS  PubMed  Google Scholar 

  46. Kai K, Nagano O, Sugihara E, Arima Y, Sampetrean O, Ishimoto T et al. Maintenance of HCT116 colon cancer cell line conforms to a stochastic model but not a cancer stem cell model. Cancer Sci 2009; 100: 2275–2282.

    Article  CAS  PubMed  Google Scholar 

  47. Kai K, Zhang Z, Yamashita H, Yamamoto Y, Miura Y, Iwase H . Loss of heterozygosity at the ATBF1-A locus located in the 16q22 minimal region in breast cancer. BMC Cancer 2008; 8: 262.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N Suzuki, Y Ito and S Hayashi for excellent animal husbandry, I Ishimatsu for expert assistance with histology and K Hashimoto for expert help in the flow cytometry lab. We thank T Suda and MC Hung for invaluable discussions. Thanks are also owed to M Fujiwara for expert help with microarray analysis, T Ishimoto for technical help with confocal microscopy and SC Patterson for editorial assistance. This work was supported by grants from the Japan Society for the Promotion of Science, Japan (to KK and HS). KK was supported by the program ‘Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation’ by the Ministry of Education, Culture, Sports, Science and Technology, Japan. This research was also supported in part by the US National Institutes of Health through MD Anderson's Cancer Center Support Grant (5 P30 CA016672-36), grant R01 CA123318-01A1 (to NTU) and by the Nellie B Connally Breast Cancer Research Fund and a donation from Mr and Mrs Sidney J Jansma, Jr.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H Saya or N T Ueno.

Ethics declarations

Competing interests

The authors declares no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kai, K., Iwamoto, T., Kobayashi, T. et al. Ink4a/Arf−/− and HRAS(G12V) transform mouse mammary cells into triple-negative breast cancer containing tumorigenic CD49f quiescent cells. Oncogene 33, 440–448 (2014). https://doi.org/10.1038/onc.2012.609

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.609

Keywords

This article is cited by

Search

Quick links