Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic variations in miR-27a gene decrease mature miR-27a level and reduce gastric cancer susceptibility

Abstract

MicroRNAs (miRNAs) are noncoding RNAs that function as post-transcriptional regulators of tumor oncogenes and suppressors. Single-nucleotide polymorphisms (SNPs) in miRNA genes are a novel class of genetic variations in the human genome that are currently being identified and investigated in human cancers. In this study, we aimed to investigate whether SNPs in the miR-27a gene affect miR-27a expression and alter susceptibility to gastric cancer. Therefore, we conducted a case–control population study and the allele and genotype frequencies for polymorphism rs11671784 in miR-27a gene were examined in the study population. As a result, we found that the G/A polymorphism in the miR-27a gene exhibited a significant effect on gastric cancer risk. Compared with GG homozygotes, subjects who were GA heterozygotes or AA homozygotes exhibited a decreased risk of gastric cancer. The G/A polymorphism impaired the processing of pre-miR-27a to mature miR-27a, resulting in significantly reduced expression of mature miR-27a and an increased level of its target HOXA10. Furthermore, we confirmed these findings in in vitro studies by overexpressing pre-miR-27a carrying G or A allele. It provided further evidence demonstrating that allelic difference of rs11671784 is linked to gastric tumorigenesis. In summary, our results indicate that the G/A polymorphism in miR-27a gene (rs11671784) decreases miR-27a expression, reduces gastric cancer risk and plays a role in gastric tumorigenesis. This is the first study to address the role and function of miR-27a polymorphism rs11671784 in gastric cancer. These results could be useful to assess individual susceptibility of gastric cancer and will improve our understanding of the potential contribution of miRNA SNPs to cancer pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Kelley JR, Duggan JM . Gastric cancer epidemiology and risk factors. J Clin Epidemiol 2003; 56: 1–9.

    Article  PubMed  Google Scholar 

  2. Bornschein J, Rokkas T, Selgrad M, Malfertheiner P . Gastric cancer: clinical aspects, epidemiology and molecular background. Helicobacter 2011; 16 (Suppl 1): 45–52.

    Article  CAS  PubMed  Google Scholar 

  3. González CA, Agudo A . Carcinogenesis, prevention and early detection of gastric cancer: where we are and where we should go. Int J Cancer 2012; 130: 745–753.

    Article  PubMed  Google Scholar 

  4. Yang L, Parkin DM, Ferlay J, Li L, Chen Y . Estimates of cancer incidence in China for 2000 and projections for 2005. Cancer Epidemiol Biomarkers Prev 2005; 14: 243–250.

    Article  PubMed  Google Scholar 

  5. Leung WK, Wu MS, Kakugawa Y, Kim JJ, Yeoh KG, Goh KL et al. Screening for gastric cancer in Asia: current evidence and practice. Lancet Oncol 2008; 9: 279–287.

    Article  PubMed  Google Scholar 

  6. Esquela-Kerscher A, Slack FJ . Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006; 6: 259–269.

    Article  CAS  PubMed  Google Scholar 

  7. Carthew RW, Sontheimer EJ . Origins and mechanisms of miRNAs and siRNAs. Cell 2009; 136: 642–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Iorio MV, Croce CM . MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol 2009; 27: 5848–5856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425: 415–419.

    Article  CAS  PubMed  Google Scholar 

  10. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN . The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 2004; 18: 3016–3027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 2006; 125: 887–901.

    Article  CAS  PubMed  Google Scholar 

  12. Bushati N, Cohen SM . microRNA functions. Annu Rev Cell Dev Biol 2007; 23: 175–205.

    Article  CAS  PubMed  Google Scholar 

  13. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP . The impact of microRNAs on protein output. Nature 2008; 455: 64–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004; 101: 2999–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834–838.

    Article  CAS  PubMed  Google Scholar 

  16. Calin GA, Croce CM . MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857–866.

    Article  CAS  PubMed  Google Scholar 

  17. Calin GA, Croce CM . MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 2006; 66: 7390–7394.

    Article  CAS  PubMed  Google Scholar 

  18. Bandres E, Bitarte N, Arias F, Agorreta J, Fortes P, Agirre X et al. MicroRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells. Clin Cancer Res 2009; 15: 2281–2290.

    Article  CAS  PubMed  Google Scholar 

  19. Kogo R, Mimori K, Tanaka F, Komune S, Mori M . Clinical significance of miR-146a in gastric cancer cases. Clin Cancer Res 2011; 17: 4277–4284.

    Article  CAS  PubMed  Google Scholar 

  20. Yang Q, Jie Z, Cao H, Greenlee AR, Yang C, Zou F et al. Low-level expression of let-7a in gastric cancer and its involvement in tumorigenesis by targeting RAB40C. Carcinogenesis 2011; 32: 713–722.

    Article  CAS  PubMed  Google Scholar 

  21. Chintharlapalli S, Papineni S, Abdelrahim M, Abudayyeh A, Jutooru I, Chadalapaka G et al. Oncogenic microRNA-27a is a target for anticancer agent methyl 2-cyano-3,11-dioxo-18beta-olean-1,12-dien-30-oate in colon cancer cells. Int J Cancer 2009; 125: 1965–1974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu T, Tang H, Lang Y, Liu M, Li X . MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett 2009; 273: 233–242.

    Article  CAS  PubMed  Google Scholar 

  23. Lerner M, Lundgren J, Akhoondi S, Jahn A, Ng HF, Moqadam FA et al. MiRNA-27a controls FBW7/hCDC4-dependent cyclin E degradation and cell cycle progression. Cell Cycle 2011; 10: 2172–2183.

    Article  CAS  PubMed  Google Scholar 

  24. Wang Q, Li DC, Li ZF, Liu CX, Xiao YM, Zhang B et al. Upregulation of miR-27a contributes to the malignant transformation of human bronchial epithelial cells induced by SV40 small T antigen. Oncogene 2011; 30: 3875–3886.

    Article  CAS  PubMed  Google Scholar 

  25. Katada T, Ishiguro H, Kuwabara Y, Kimura M, Mitui A, Mori Y et al. microRNA expression profile in undifferentiated gastric cancer. Int J Oncol 2009; 34: 537–542.

    CAS  PubMed  Google Scholar 

  26. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T . Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 2007; 39: 673–677.

    Article  CAS  PubMed  Google Scholar 

  27. Saunders MA, Liang H, Li WH . Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci USA 2007; 104: 3300–3305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun G, Yan J, Noltner K, Feng J, Li H, Sarkis DA et al. SNPs in human miRNA genes affect biogenesis and function. RNA 2009; 15: 1640–1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ryan BM, Robles AI, Harris CC . Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 2010; 10: 389–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB . Prediction of mammalian microRNA targets. Cell 2003; 115: 787–798.

    Article  CAS  PubMed  Google Scholar 

  31. Sun Q, Gu H, Zeng Y, Xia Y, Wang Y, Jing Y et al. Hsa-mir-27a genetic variant contributes to gastric cancer susceptibility through affecting miR-27a and target gene expression. Cancer Sci 2010; 101: 2241–2247.

    Article  CAS  PubMed  Google Scholar 

  32. Zhou Y, Du WD, Chen G, Ruan J, Xu S, Zhou FS et al. Association analysis of genetic variants in microRNA networks and gastric cancer risk in a Chinese Han population. J Cancer Res Clin Oncol 2012; 138: 939–945.

    Article  CAS  PubMed  Google Scholar 

  33. Catucci I, Verderio P, Pizzamiglio S, Bernard L, Dall'olio V, Sardella D et al. The SNP rs895819 in miR-27a is not associated with familial breast cancer risk in Italians. J Cancer Res Clin Oncol 2012; 133: 805–807.

    Google Scholar 

  34. Zhang M, Jin M, Yu Y, Zhang S, Wu Y, Liu H et al. Associations of miRNA polymorphisms and female physiological characteristics with breast cancer risk in Chinese population. Eur J Cancer Care 2012; 21: 274–280.

    Article  CAS  Google Scholar 

  35. Duan R, Pak C, Jin P . Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum Mol Genet 2007; 16: 1124–1131.

    Article  CAS  PubMed  Google Scholar 

  36. Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, de la Chapelle A . Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci USA 2008; 105: 7269–7274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hu Y, Liu CM, Qi L, He TZ, Shi-Guo L, Hao CJ et al. Two common SNPs in pri-miR-125a alter the mature miRNA expression and associate with recurrent pregnancy loss in a Han-Chinese population. RNA Biol 2011; 8: 258–264.

    Article  Google Scholar 

  38. Labbaye C, Spinello I, Quaranta MT, Pelosi E, Pasquini L, Petrucci E et al. A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis. Nat Cell Biol 2008; 10: 788–801.

    Article  CAS  PubMed  Google Scholar 

  39. Jazdzewski K, Liyanarachchi S, Swierniak M, Pachucki J, Ringel MD, Jarzab B et al. A Polymorphic mature microRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proc Natl Acad Sci USA 2009; 106: 1502–1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nunes FD, de Almeida FC, Tucci R, de Sousa SC . Homeobox genes: a molecular link between development and cancer. Pesqui Odontol Bras 2003; 17: 94–98.

    Article  PubMed  Google Scholar 

  41. Shah N, Sukumar S . The Hox genes and their roles in oncogenesis. Nat Rev Cancer 2010; 10: 361–371.

    Article  CAS  PubMed  Google Scholar 

  42. Plowright L, Harrington KJ, Pandha HS, Morgan R . HOX transcription factors are potential therapeutic targets in non-small-cell lung cancer (targeting HOX genes in lung cancer). Br J Cancer 2009; 100: 470–475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cantile M, Franco R, Schiavo G, Procino A, Cindolo L, Botti G et al. The HOX genes network in uro-genital cancers: mechanisms and potential therapeutic implications. Curr Med Chem 2011; 18: 4872–4884.

    Article  CAS  PubMed  Google Scholar 

  44. Cillo C, Schiavo G, Cantile M, Bihl MP, Sorrentino P, Carafa V et al. The HOX gene network in hepatocellular carcinoma. Int J Cancer 2011; 29: 2577–2587.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Xin Zhou and Wei Li (Department of General Surgery, First Affiliated Hospital of Nanchang University) for collecting the clinicopathologic information utilized in this study. We thank Chengjie Liang (Laboratory Animal Center, Guangzhou Medical University) for assistance with the nude mice assays. This work was supported by the National Natural Science Foundation of China (30771780, 30972443 to YJ and 81102099 to QY), the Natural Science Foundation of Guangdong Province (9251018201000004 to YJ), the University Talent Program of Guangdong (2010-79 to YJ) and the University Talent Program of Guangzhou (10A003D to YJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Jiang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Q., Jie, Z., Ye, S. et al. Genetic variations in miR-27a gene decrease mature miR-27a level and reduce gastric cancer susceptibility. Oncogene 33, 193–202 (2014). https://doi.org/10.1038/onc.2012.569

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.569

Keywords

This article is cited by

Search

Quick links