Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Aromatase overexpression induces malignant changes in estrogen receptor α negative MCF-10A cells

Abstract

Estrogen is a risk factor of breast cancer. Elevated expression of aromatase (estrogen synthase) in breast tissues increases local estradiol concentrations and is associated with breast cancer development, but the causal relationship between aromatase and breast cancer has not been identified. Accumulating data suggest that both estrogen receptor (ER)-dependent and -independent effects are involved in estrogen carcinogenesis. We established a model by expressing aromatase in ERα− MCF-10A human breast epithelial cells to investigate ERα-independent effects of estrogen in the process of malignant transformation. Overexpression of aromatase significantly increased anchorage-independent growth. Parental- or vector-expressing MCF-10A cells did not form colonies under the same conditions. The anchorage-independent growth of MCF-10Aarom cells can be completely abolished by pre-treatment with the aromatase inhibitor, letrozole. Neither MCF-10Aarom nor MCF-10Avector cells grown in monolayer were affected by short-term exposure to estradiol. Enhanced motility is another characteristic of cellular transformation. Motility of MCF-10Aarom cells was increased, which could be inhibited by letrozole. Increases in stem cell population in breast cancer tissues are associated with tumor recurrence and metastasis. CD44high/CD24low is a stem cell marker. We found that CD24 mRNA levels were reduced in MCF-10Aarom cells compared with those in parental- and vector-transfected cells. By examining individual clones of MCF-10Aarom with various aromatase activities, we found that the CD24 mRNA levels were inversely correlated with aromatase activity. The ability of MCF-10Aarom cells to form mammospheres in the absence of serum was increased. Our results suggest that overexpression of aromatase in MCF-10A cells causes malignant transformation. Estrogen metabolite-mediated genotoxicity and induction of a stem cell/progenitor cell population are possible mechanisms. These studies provide additional evidence for ERα-independent mechanism(s) in estrogen carcinogenesis and implicate superiority of aromatase inhibitors to antiestrogens for breast cancer prevention.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Key T, Appleby P, Barnes I, Reeves G, Endogenous Hormones and Breast Cancer Collaborative Group. Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst 2002; 94: 606–616.

    Article  CAS  PubMed  Google Scholar 

  2. Kotsopoulos J, Chen WY, Gates MA, Tworoger SS, Hankinson SE, Rosner BA . Risk factors for ductal and lobular breast cancer: results from the nurses’ health study. Breast Cancer Res 2010; 12: R106.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen WY, Manson JE, Hankinson SE, Rosner B, Holmes MD, Willett WC et al. Unopposed estrogen therapy and the risk of invasive breast cancer. Arch Intern Med 2006; 166: 1027–1032.

    Article  CAS  PubMed  Google Scholar 

  4. Feinleib M . Breast cancer and artificial menopause: a cohort study. J Natl Cancer Inst 1968; 41: 315–329.

    CAS  PubMed  Google Scholar 

  5. Trichopoulos D, MacMahon B, Cole P . Menopause and breast cancer risk. J Natl Cancer Inst 1972; 48: 605–613.

    CAS  PubMed  Google Scholar 

  6. Kaaks R, Rinaldi S, Key TJ, Berrino F, Peeters PHM, Biessy C et al. Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition. Endocr Relat Cancer 2005; 12: 1071–1082.

    Article  CAS  PubMed  Google Scholar 

  7. Howell A, Cuzick J, Baum M, Buzdar A, Dowsett M, Forbes JF et al. Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet 2005; 365: 60–62.

    Article  CAS  PubMed  Google Scholar 

  8. Breast International Group (BIG) 1-98 Collaborative Group, Thürlimann B, Keshaviah A, Coates AS, Mouridsen H, Mauriac L et al. A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. N Engl J Med 2005; 353: 2747–2757.

    Article  Google Scholar 

  9. Goss PE, Ingle JN, Alés-Martínez JE, Cheung AM, Chlebowski RT, Wactawski-Wende J et al. Exemestane for breast-cancer prevention in postmenopausal women. N Engl J Med 2011; 364: 2381–2391.

    Article  CAS  PubMed  Google Scholar 

  10. Berkovitz GD, Guerami A, Brown TR, MacDonald PC, Migeon CJ . Familial gynecomastia with increased extraglandular aromatization of plasma carbon 19-steroids. J Clin Inv 1985; 75: 1763–1769.

    Article  CAS  Google Scholar 

  11. Bulard J, Mowszowicz I, Schaison G . Increased aromatase activity in pubic skin fibroblasts from patients with isolated gynecomastia. J Clin Endocrinol Metab 1987; 64: 618–623.

    Article  CAS  PubMed  Google Scholar 

  12. DeOme KB, Faulkin LJ, Bern HA, Blair PB . Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res 1959; 19: 515–520.

    CAS  PubMed  Google Scholar 

  13. Tekmal RR, Ramachandra N, Gubba S, Durgam VR, Mantione J, Toda K et al. Overexpression of int-5/aromatase in mammary glands of transgenic mice results in the induction of hyperplasia and nuclear abnormalities. Cancer Res 1996; 56: 3180–3185.

    CAS  PubMed  Google Scholar 

  14. Yue W, Wang J-P, Li Y, Fan P, Liu G, Zhang N et al. Effects of estrogen on breast cancer development: role of estrogen receptor independent mechanisms. Int J Cancer 2010; 127: 1748–1757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cavalieri E, Chakravarti D, Guttenplan J, Jankowiak R, Muti P, Rogan E et al. Catechol estrogen quinones as initiators of breast and other human cancers: implications for biomarkers of susceptibility and cancer prevention. Biochim Biophys Acta 2006; 1766: 63–78.

    CAS  PubMed  Google Scholar 

  16. Yager JD, Davidson NE . Estrogen carcinogenesis in breast cancer. N Engl J Med 2006; 354: 270–282.

    Article  CAS  PubMed  Google Scholar 

  17. Yager JD, Santen RJ . Mechanisms relating estrogens to breast cancer. Transl Endocrinol Metab 2012; 3: 1–19.

    Google Scholar 

  18. Zhou D, Pompon D, Chen S . Stable expression of human aromatase complementary DNA in mammalian cells: a useful system for aromatase inhibitor screening. Cancer Res 1990; 50: 6949–6954.

    CAS  PubMed  Google Scholar 

  19. Maurice KT . Diagnosis and surgical removal of a granulosa–theca cell tumor in a mare. Can Vet J 2005; 46: 644–646.

    PubMed  PubMed Central  Google Scholar 

  20. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yue W, Wang J-P, Hamilton CJ, Demers LM, Santen RJ . In situ aromatization enhances breast tumor estradiol levels and cellular proliferation. Cancer Res 1998; 58: 927–932.

    CAS  PubMed  Google Scholar 

  22. O’Neill JS, Elton RA, Miller WR . Aromatase activity in adipose tissue from breast quadrants: a link with tumor site. BMJ 1988; 296: 741–743.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bulun SE, Price TM, Aitken J, Mahendroo MS, Simpson ER . A link between breast cancer and local estrogen biosynthesis suggested by quantification of breast adipose tissue aromatase cytochrome P450 transcripts using competitive polymerase chain reaction after reverse transcription. J Clin Endocrinol Metab 1993; 77: 1622–1628.

    CAS  PubMed  Google Scholar 

  24. Hu Y, Ghosh S, Amleh A, Yue W, Lu Y, Katz A et al. Modulation of aromatase expression by BRCA1: a possible link to tissue-specific tumor suppression. Oncogene 2005; 24: 8343–8348.

    Article  CAS  PubMed  Google Scholar 

  25. Lu M, Chen D, Lin Z, Reierstad S, Trauernicht AM, Boyer TG et al. BRCA1 negatively regulates the cancer-associated aromatase promoters I.3 and II in breast adipose fibroblasts and malignant epithelial cells. J Clin Endocrinol Metab 2006; 91: 4514–4519.

    Article  CAS  PubMed  Google Scholar 

  26. Agarwal VR, Bulun SE, Leitch M, Rohrich R, Simpson ER . Use of alternative promoters to express the aromatase cytochrome P450 (CYP19) gene in breast adipose tissues of cancer-free and breast cancer patients. J Clin Endocrinol Metab 1996; 81: 3843–3849.

    CAS  PubMed  Google Scholar 

  27. Chand AL, kConFab, Simpson ER, Clyne CD . Aromatase expression is increased in BRCA1 mutation carriers. BMC Cancer 2009; 9: 148.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Diaz-Cruz ES, Sugimoto Y, Gallicano GI, Brueggemeier RW, Furth PA . Comparison of increased aromatase versus ERα in the generation of mammary hyperplasia and cancer. Cancer Res 2011; 71: 5477–5487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rebbeck TR, Kauff ND, Domchek SM . Meta-analysis of risk reduction estimates associated with risk-reducing salpingo-oophorectomy in BRCA1 or BRCA2 mutation carriers. J Natl Cancer Inst 2009; 101: 80–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lakhani SR, Van De Vijver MJ, Jacquemier J, Anderson TJ, Osin PP, McGuffog L et al. The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J Clin Oncol 2002; 20: 2310–2318.

    Article  CAS  PubMed  Google Scholar 

  31. Foulkes WD, Metcalfe K, Sun P, Hanna WM, Lynch HT, Ghadirian P et al. Estrogen receptor status in BRCA1- and BRCA2-related breast cancer: the influence of age, grade, and histological type. Clin Cancer Res 2004; 10: 2029–2034.

    Article  CAS  PubMed  Google Scholar 

  32. Russo J, Lareef HM, Tahin Q, Hu Y-F, Slater C, Ao X et al. 17β-Estradiol is carcinogenic in human breast epithelial cells. J Steroid Biochem Mol Biol 2002; 80: 149–162.

    Article  CAS  PubMed  Google Scholar 

  33. Russo J, Fernandez SV, Russo PA, Fernbaugh R, Sheriff FS, Lareef HM et al. 17-Beta-estradiol induces transformation and tumorigenesis in human breast epithelial cells. FASEB J 2006; 20: 1622–1634.

    Article  CAS  PubMed  Google Scholar 

  34. Shen Y-M, Troxel AB, Vedantam S, Penning TM, Field J . Comparison of p53 mutations induced by PAH o-quinones with those caused by anti-benzo[α]pyrene diol epoxide in vitro: role of reactive oxygen and biological selection. Chem Res Toxicol 2006; 19: 1441–1450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gaikwad NW, Yang L, Muti P, Meza JL, Pruthi S, Ingle JN et al. The molecular etiology of breast cancer: evidence from biomarkers of risk. Int J Cancer 2008; 122: 1949–1957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gaikwad NW, Yang L, Pruthi S, Ingle JN, Sandhu N, Rogan EG et al. Urine biomarkers of risk in the molecular etiology of breast cancer. Breast Cancer: Basic Clin Res 2009; 3: 1–8.

    CAS  Google Scholar 

  37. Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH et al. CD44+/CD24 breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 2006; 8: R59.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Asselin-Labat M-L, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER et al. Control of mammary stem cell function by steroid hormone signalling. Nature 2010; 465: 798–802.

    Article  CAS  PubMed  Google Scholar 

  39. Joshi PA, Jackson HW, Beristain AG, Di Grappa MA, Mote PA, Clarke CL et al. Progesterone induces adult mammary stem cell expansion. Nature 2010; 465: 803–807.

    Article  CAS  PubMed  Google Scholar 

  40. Fillmore CM, Gupta PB, Rudnick JA, Caballero S, Keller PJ, Lander ES et al. Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3 signaling. Proc Natl Acad Sci USA 2010; 107: 21737–21742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yue W, Wang J-P, Conaway MR, Li Y, Santen RJ . Adaptive hypersensitivity following long-term estrogen deprivation: involvement of multiple signal pathways. J Steroid Biochem Mol Biol 2003; 86: 265–274.

    Article  CAS  PubMed  Google Scholar 

  42. Yue W, Wang J-P, Conaway M, Masamura S, Li Y, Santen RJ . Activation of the MAPK pathway enhances sensitivity of MCF-7 breast cancer cells to the mitogenic effect of estradiol. Endocrinology 2002; 143: 3221–3229.

    Article  CAS  PubMed  Google Scholar 

  43. Russo J, Hu YF, Yang X, Russo IH . Developmental, cellular, and molecular basis of human breast cancer. J Natl Cancer Inst Monogr 2000; 27: 17–37.

    Article  CAS  Google Scholar 

  44. Lu F, Zahid M, Saeed M, Cavalieri EL, Rogan EG . Estrogen metabolism and formation of estrogen–DNA adducts in estradiol-treated MCF-10F cells: The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin induction and catechol-O-methyltransferase inhibition. J Steroid Biochem Mol Biol 2007; 105: 150–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rogan EG, Badawi AF, Devanesan PD, Meza JL, Edney JA, West WW et al. Relative imbalances in estrogen metabolism and conjugation in breast tissue of women with carcinoma: potential biomarkers of susceptibility to cancer. Carcinogenesis 2003; 24: 697–702.

    Article  CAS  PubMed  Google Scholar 

  46. Fan P, Wang J-P, Santen RJ, Yue W . Long-term treatment with tamoxifen facilitates translocation of estrogen receptor α out of the nucleus and enhances its interaction with EGFR in MCF-7 breast cancer cells. Cancer Res 2007; 67: 1352–1360.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is supported by DOD Grants: DOD DAMD17-01-1-0444 and DAMD17-01-1-0445. Human aromatase cDNA plasmid was kindly provided by Dr Shiuan Chen (Beckman Institute at City of Hope, Duarte, CA, USA). Measurement of estrogen metabolites was performed by Dr Cavalieri at the Laboratory of Eppley Institute for Research in Cancer and Allied Diseases (University of Nebraska Medical Center Omaha, NE, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Yue.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Gildea, J. & Yue, W. Aromatase overexpression induces malignant changes in estrogen receptor α negative MCF-10A cells. Oncogene 32, 5233–5240 (2013). https://doi.org/10.1038/onc.2012.558

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.558

Keywords

Search

Quick links