Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma

Abstract

With 30 000 deaths annually in the United States, prostate cancer (PCa) is a major oncologic disease. Here we show that the microRNAs miR-130a, miR-203 and miR-205 jointly interfere with the two major oncogenic pathways in prostate carcinoma and are downregulated in cancer tissue. Using transcriptomics we show that the microRNAs repress several gene products known to be overexpressed in this cancer. Argonaute 2 (AGO2) co-immunoprecipitation, reporter assays and western blot analysis demonstrate that the microRNAs directly target several components of the mitogen-activated protein kinase (MAPK) and androgen receptor (AR) signaling pathways, among those several AR coregulators and HRAS (Harvey rat sarcoma viral oncogene homolog), and repress signaling activity. Both pathways are central for the development of the primary tumor and in particular the progression to its incurable castration-resistant form. Reconstitution of the microRNAs in LNCaP PCa cells induce morphological changes, which resemble the effect of androgen deprivation, and jointly impair tumor cell growth by induction of apoptosis and cell cycle arrest. We therefore propose that these microRNAs jointly act as tumor suppressors in prostate carcinoma and might interfere with progression to castration resistance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ . Cancer Statistics, 2009. CA Cancer J Clin 2009; 59: 225–249.

    Article  PubMed  Google Scholar 

  2. Taplin ME, Balk SP . Androgen receptor: a key molecule in the progression of prostate cancer to hormone independence. J Cell Biochem 2004; 91: 483–490.

    Article  CAS  PubMed  Google Scholar 

  3. Edwards J, Bartlett JMS . The androgen receptor and signal-transduction pathways in hormone-refractory prostate cancer. Part 1: modifications to the androgen receptor. BJU Int 2005; 95: 1320–1326.

    Article  CAS  PubMed  Google Scholar 

  4. Papatsoris AG, Karamouzis MV, Papavassiliou AG . The power and promise of ‘rewiring’ the mitogen-activated protein kinase network in prostate cancer therapeutics. Mol Cancer Ther 2007; 6: 811–819.

    Article  CAS  PubMed  Google Scholar 

  5. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  6. Filipowicz W, Bhattacharyya SN, Sonenberg N . Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008; 9: 102–114.

    Article  CAS  PubMed  Google Scholar 

  7. Esquela-Kerscher A, Slack FJ . Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006; 6: 259–269.

    Article  CAS  PubMed  Google Scholar 

  8. Negrini M, Nicoloso MS, Calin GA . MicroRNAs and cancer–new paradigms in molecular oncology. Curr Opin Cell Biol 2009; 21: 470–479.

    Article  CAS  PubMed  Google Scholar 

  9. Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK et al. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer 2006; 5: 24.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TLJ, Visakorpi T . MicroRNA expression profiling in prostate cancer. Cancer Res 2007; 67: 6130–6135.

    Article  CAS  PubMed  Google Scholar 

  11. Ambs S, Prueitt RL, Yi M, Hudson RS, Howe TM, Petrocca F et al. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 2008; 68: 6162–6170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Prueitt RL, Yi M, Hudson RS, Wallace TA, Howe TM, Yfantis HG et al. Expression of microRNAs and protein-coding genes associated with perineural invasion in prostate cancer. Prostate 2008; 68: 1152–1164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ozen M, Creighton CJ, Ozdemir M, Ittmann M . Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 2008; 27: 1788–1793.

    Article  CAS  PubMed  Google Scholar 

  14. Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 2010; 126: 1166–1176.

    CAS  PubMed  Google Scholar 

  15. Gandellini P, Folini M, Zaffaroni N . Towards the definition of prostate cancer-related microRNAs: where are we now? Trends Mol Med 2009; 15: 381–390.

    Article  CAS  PubMed  Google Scholar 

  16. Coppola V, Maria RD, Bonci D . MicroRNAs and prostate cancer. Endocr Relat Cancer 2010; 17: F1–F17.

    Article  CAS  PubMed  Google Scholar 

  17. Gleason DF, Mellinger GT . Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol 1974; 111: 58–64.

    Article  CAS  PubMed  Google Scholar 

  18. Viticchié G, Lena AM, Latina A, Formosa A, Gregersen LH, Lund AH et al. Mir-203 controls proliferation, migration and invasive potential of prostate cancer cell lines. Cell Cycle 2011; 10: 1121–1131.

    Article  PubMed  Google Scholar 

  19. Saini S, Majid S, Yamamura S, Tabatabai ZL, Suh SO, Shahryari V et al. Regulatory role of miR-203 in prostate cancer progression and metastasis. Clin Cancer Res 2011; 17: 5287–5298; 10.1158/1078-0432.CCR-10-2619.

    Article  CAS  PubMed  Google Scholar 

  20. Saeed B, Zhang H, Ng SC . Apoptotic program is initiated but not completed in LNCaP cells in response to growth in charcoal-stripped media. Prostate 1997; 31: 145–152.

    Article  CAS  PubMed  Google Scholar 

  21. Hååg P, Bektic J, Bartsch G, Klocker H, Eder IE . Androgen receptor down regulation by small interference RNA induces cell growth inhibition in androgen sensitive as well as in androgen independent prostate cancer cells. J Steroid Biochem Mol Biol 2005; 96: 251–258.

    Article  PubMed  Google Scholar 

  22. Majid S, Dar AA, Saini S, Yamamura S, Hirata H, Tanaka Y et al. MicroRNA-205-directed transcriptional activation of tumor suppressor genes in prostate cancer. Cancer 2010; 116: 5637–5649.

    Article  CAS  PubMed  Google Scholar 

  23. Lee DK, Duan HO, Chang C . From androgen receptor to the general transcription factor TFIIH. Identification of cdk activating kinase (CAK) as an androgen receptor NH(2)-terminal associated coactivator. J Biol Chem 2000; 275: 9308–9313.

    Article  CAS  PubMed  Google Scholar 

  24. Pitkänen-Arsiola T, Tillman JE, Gu G, Yuan J, Roberts RL, Wantroba M et al. Androgen and anti-androgen treatment modulates androgen receptor activity and DJ-1 stability. Prostate 2006; 66: 1177–1193.

    Article  PubMed  Google Scholar 

  25. Park JJ, Irvine RA, Buchanan G, Koh SS, Park JM, Tilley WD et al. Breast cancer susceptibility gene 1 (BRCAI) is a coactivator of the androgen receptor. Cancer Res 2000; 60: 5946–5949.

    CAS  PubMed  Google Scholar 

  26. Yeh S, Chang C . Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc Natl Acad Sci USA 1996; 93: 5517–5521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Beitzinger M, Peters L, Zhu JY, Kremmer E, Meister G . Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biol 2007; 4: 76–84.

    Article  CAS  PubMed  Google Scholar 

  28. Koochekpour S, Lee TJ, Wang R, Culig Z, Delorme N, Caffey S et al. Prosaposin upregulates AR and PSA expression and activity in prostate cancer cells (LNCaP). Prostate 2007; 67: 178–189.

    Article  CAS  PubMed  Google Scholar 

  29. Wang JG, Barsky LW, Davicioni E, Weinberg KI, Triche TJ, Zhang XK et al. Retinoic acid induces leukemia cell G1 arrest and transition into differentiation by inhibiting cyclin-dependent kinase-activating kinase binding and phosphorylation of PML/RARalpha. FASEB J 2006; 20: 2142–2144.

    Article  CAS  PubMed  Google Scholar 

  30. Harada N, Ohmori Y, Yamaji R, Higashimura Y, Okamoto K, Isohashi F et al. ARA24/Ran enhances the androgen-dependent NH2- and COOH-terminal interaction of the androgen receptor. Biochem Biophys Res Commun 2008; 373: 373–377.

    Article  CAS  PubMed  Google Scholar 

  31. Koochekpour S, Sartor O, Hiraiwa M, Lee TJ, Rayford W, Remmel N et al. Saposin C stimulates growth and invasion, activates p42/44 and SAPK/JNK signaling pathways of MAPK and upregulates uPA/uPAR expression in prostate cancer and stromal cells. Asian J Androl 2005; 7: 147–158.

    Article  CAS  PubMed  Google Scholar 

  32. Mize GJ, Wang W, Takayama TK . Prostate-specific kallikreins-2 and -4 enhance the proliferation of DU-145 prostate cancer cells through protease-activated receptors-1 and -2. Mol Cancer Res 2008; 6: 1043–1051.

    Article  CAS  PubMed  Google Scholar 

  33. Acevedo VD, Ittmann M, Spencer DM . Paths of FGFR-driven tumorigenesis. Cell Cycle 2009; 8: 580–588.

    Article  CAS  PubMed  Google Scholar 

  34. Diamandis EP, Yousef GM, Luo LY, Magklara A, Obiezu CV . The new human kallikrein gene family: implications in carcinogenesis. Trends Endocrinol Metab 2000; 11: 54–60.

    Article  CAS  PubMed  Google Scholar 

  35. Weber MJ, Gioeli D . Ras signaling in prostate cancer progression. J Cell Biochem 2004; 91: 13–25.

    Article  CAS  PubMed  Google Scholar 

  36. Sikand K, Slaibi JE, Singh R, Slane SD, Shukla GC . Mir-488* inhibits androgen receptor expression in prostate carcinoma cells. Int J Cancer 2011; 129: 810–819.

    Article  CAS  PubMed  Google Scholar 

  37. Watahiki A, Wang Y, Morris J, Dennis K, O’Dwyer HM, Gleave M et al. MicroRNAs associated with metastatic prostate cancer. PLoS One 2011; 6: e24950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen S, Xu Y, Yuan X, Bubley GJ, Balk SP . Androgen receptor phosphorylation and stabilization in prostate cancer by cyclin-dependent kinase 1. Proc Natl Acad Sci USA 2006; 103: 15969–15974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Satoh T, Ishizuka T, Tomaru T, Yoshino S, Nakajima Y, Hashimoto K et al. Tat-binding protein-1 (TBP-1), an ATPase of 19S regulatory particles of the 26S proteasome, enhances androgen receptor function in cooperation with TBP-1-interacting protein/Hop2. Endocrinology 2009; 150: 3283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tillman JE, Yuan J, Gu G, Fazli L, Ghosh R, Flynt AS et al. DJ-1 binds androgen receptor directly and mediates its activity in hormonally treated prostate cancer cells. Cancer Res 2007; 67: 4630–4637.

    Article  CAS  PubMed  Google Scholar 

  41. Truica CI, Byers S, Gelmann EP . Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res 2000; 60: 4709–4713.

    CAS  PubMed  Google Scholar 

  42. Wang K, Zhang S, Marzolf B, Troisch P, Brightman A, Hu Z et al. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci USA 2009; 106: 4402–4407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rajan P, Gaughan L, Dalgliesh C, El-Sherif A, Robson CN, Leung HY et al. The RNA-binding and adaptor protein sam68 modulates signal-dependent splicing and transcriptional activity of the androgen receptor. J Pathol 2008; 215: 67–77.

    Article  CAS  PubMed  Google Scholar 

  44. Heemers HV, Tindall DJ . Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev 2007; 28: 778–808.

    Article  CAS  PubMed  Google Scholar 

  45. Edwards J, Krishna NS, Witton CJ, Bartlett JMS . Gene amplifications associated with the development of hormone-resistant prostate cancer. Clin Cancer Res 2003; 9: 5271–5281.

    CAS  PubMed  Google Scholar 

  46. Lee TJ, Sartor O, Luftig RB, Koochekpour S . Saposin C promotes survival and prevents apoptosis via PI3K/Akt-dependent pathway in prostate cancer cells. Mol Cancer 2004; 3: 31.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Epis MR, Giles KM, Barker A, Kendrick TS, Leedman PJ . miR-331-3p regulates ERBB-2 expression and androgen receptor signaling in prostate cancer. J Biol Chem 2009; 284: 24696–24704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hendriksen PJM, Dits NFJ, Kokame K, Veldhoven A, van Weerden WM, Bangma CH et al. Evolution of the androgen receptor pathway during progression of prostate cancer. Cancer Res 2006; 66: 5012–5020.

    Article  CAS  PubMed  Google Scholar 

  49. Heinlein CA, Chang C . Androgen receptor in prostate cancer. Endocr Rev 2004; 25: 276–308.

    Article  CAS  PubMed  Google Scholar 

  50. Gavrielides MV, Gonzalez-Guerrico AM, Riobo NA, Kazanietz MG . Androgens regulate protein kinase Cdelta transcription and modulate its apoptotic function in prostate cancer cells. Cancer Res 2006; 66: 11792–11801.

    Article  CAS  PubMed  Google Scholar 

  51. Bolstad BM, Irizarry RA, Astrand M, Speed TP . A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003; 19: 185–193.

    Article  CAS  PubMed  Google Scholar 

  52. Benjamini Y, Hochberg Y . Controlling false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 1995; 57: 289–300.

    Google Scholar 

  53. Falcon S, Gentleman R . Using GOstats to test gene lists for GO term association. Bioinformatics 2007; 23: 257–258.

    Article  CAS  PubMed  Google Scholar 

  54. Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T . miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 2009; 37: D105–D110.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Stephan Schreiber, Anne-Sophie Krakovic, Yvonne Kullnick, Sabina Christ, Kathrin Jäger, Rudolf Ascherl and Christine Schumann for technical assistance and Catherine Davis for proof-reading. We thank Gunter Meister and colleagues for providing AGO2 antibodies. This work was supported in part by the Medical Faculty of the University of Leipzig through funding of the Interdisciplinary Center for Clinical Research and a formel.1 grant ‘Sequence and functional analysis of non-coding RNA in prostate carcinoma’, the European Framework Programme 6 Project SYNLET (EC contract number 043312), by the Initiative and Networking Fund one of the Helmholtz Association (VH-NG-738) and by LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, which was funded by means of the European Social Fund and the Free State of Saxony.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Hackermüller.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Supplementary Information (PDF 3295 kb)

Supplementary Datset 1 (XLS 71 kb)

Supplementary Datset 2 (XLS 180 kb)

Supplementary Datset 3 (XLS 117 kb)

Supplementary Datset 4 (XLS 102 kb)

Supplementary Datset 5 (XLS 113 kb)

Supplementary Datset 6 (XLS 85 kb)

Supplementary Datset 7 (XLS 21 kb)

Supplementary Datset 8 (XLS 18 kb)

Supplementary Datset 9 (XLS 28 kb)

Supplementary Datset 10 (XLS 29 kb)

Supplementary Datset 11 (XLS 22 kb)

Supplementary Datset 12 (XLS 25 kb)

Supplementary Datset 13 (XLS 21 kb)

Supplementary Datset 14 (XLS 18 kb)

Supplementary Datset 15 (XLS 19 kb)

Supplementary Datset 16 (XLS 88 kb)

Supplementary Datset 17 (XLS 136 kb)

Supplementary Datset 18 (XLS 118 kb)

Supplementary Datset 19 (XLS 71 kb)

Supplementary Datset 20 (XLS 109 kb)

Supplementary Datset 21 (XLS 95 kb)

Supplementary Datset 22 (XLS 25 kb)

Supplementary Datset 23 (XLS 45 kb)

Supplementary Datset 24 (XLS 34 kb)

Supplementary Datset 25 (XLS 46 kb)

Supplementary Datset 26 (XLS 61 kb)

Supplementary Datset 27 (XLS 42 kb)

Supplementary Datset 28 (XLS 27 kb)

Supplementary Datset 29 (XLS 50 kb)

Supplementary Datset 30 (XLS 33 kb)

Supplementary Datset 31 (XLS 23 kb)

Supplementary Datset 32 (XLS 32 kb)

Supplementary Datset 33 (XLS 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boll, K., Reiche, K., Kasack, K. et al. MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma. Oncogene 32, 277–285 (2013). https://doi.org/10.1038/onc.2012.55

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.55

Keywords

This article is cited by

Search

Quick links