Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Zinc-finger protein 331, a novel putative tumor suppressor, suppresses growth and invasiveness of gastric cancer

Abstract

Zinc-finger protein 331 (ZNF331), a Kruppel-associated box zinc-finger protein gene, was identified as a putative tumor suppressor in our previous study. However, the role of ZNF331 in tumorigenesis remains elusive. We aimed to clarify its epigenetic regulation and biological functions in gastric cancer. ZNF331 was silenced or downregulated in 71% (12/17) gastric cancer cell lines. A significant downregulation was also detected in paired gastric tumors compared with adjacent non-cancer tissues. In contrast, ZNF331 was readily expressed in various normal adult tissues. The downregulation of ZNF331 was closely linked to the promoter hypermethylation as evidenced by methylation-specific PCR, bisulfite genomic sequencing and reexpression by demethylation agent treatment. DNA sequencing showed no genetic mutation/deletion of ZNF331 in gastric cancer cell lines. Ectopic expression of ZNF331 in the silenced cancer cell lines MKN28 and HCT116 significantly reduced colony formation and cell viability, induced cell cycle arrests and repressed cell migration and invasive ability. Concordantly, knockdown of ZNF331 increased cell viability and colony formation ability of gastric cancer cell line MKN45. Two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomic approach were applied to analyze the molecular basis of the biological functions of ZNF331. In all, 10 downstream targets of ZNF331 were identified to be associated with regulation of cell growth and metastasis. The tumor-suppressive effect of ZNF331 is mediated at least by downregulation of genes involved in cell growth promotion (DSTN, EIF5A, GARS, DDX5, STAM, UQCRFS1 and SET) and migration/invasion (DSTN and ACTR3), and upregulation of genome-stability gene (SSBP1) and cellular senescence gene (PNPT1). A novel target of ZNF331 (DSTN) was functionally validated. Overexpression of DSTN in BGC-823 cells increased colony formation and migration ability. In conclusion, our results suggest that ZNF331 possesses important functions for the suppression of gastric carcinogenesis as a novel functional tumor-suppressor gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

2-DE:

two-dimensional gel electrophoresis

5-Aza:

5-Aza-2′-deoxycytidine

ACTR3:

ARP3 actin-related protein 3 homolog

DDX5:

DEAD (Asp-Glu-Ala-Asp) box proteins 5

DSTN:

destrin

EIF5A:

ukaryotic translation initiation factor 5A

GARS:

glycyl-tRNA synthetase

MSP:

methylation specific PCR

PNPT:

the human PNPase gene

qRT–PCR:

quantitative RT–PCR

RT–PCR:

reverse transcript PCR

SSBP:

single-stranded DNA binding protein

STAM:

signal transducing adaptor molecule

UQCRFS:

Ubiquinol-cytochrome-c reductase, Rieske iron-sulfur polypeptide

ZNF:

zinc-finger protein

References

  1. Kang GH, Lee S, Kim JS, Jung HY . Profile of aberrant CpG island methylation along multistep gastric carcinogenesis. Lab Invest 2003; 83: 519–526.

    Article  CAS  PubMed  Google Scholar 

  2. Lee JH, Park SJ, Abraham SC, Seo JS, Nam JH, Choi C et al. Frequent CpG island methylation in precursor lesions and early gastric adenocarcinomas. Oncogene 2004; 23: 4646–4654.

    Article  CAS  PubMed  Google Scholar 

  3. Li L, Tao Q, Jin H, van Hasselt A, Poon FF, Wang X et al. The tumor suppressor UCHL1 forms a complex with p53/MDM2/ARF to promote p53 signaling and is frequently silenced in nasopharyngeal carcinoma. Clin Cancer Res 2010; 16: 2949–2958.

    Article  CAS  PubMed  Google Scholar 

  4. Rippe V, Belge G, Meiboom M, Kazmierczak B, Fusco A, Bullerdiek J . A KRAB zinc finger protein gene is the potential target of 19q13 translocation in benign thyroid tumors. Genes Chromosomes Cancer 1999; 26: 229–236.

    Article  CAS  PubMed  Google Scholar 

  5. Wu H, Zhang S, Qiu W, Zhang G, Xia Q, Xiao C et al. Isolation, characterization, and mapping of a novel human KRAB zinc finger protein encoding gene ZNF463. Biochim Biophys Acta 2001; 1518: 190–193.

    Article  CAS  PubMed  Google Scholar 

  6. Laity JH, Lee BM, Wright PE . Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 2001; 11: 39–46.

    Article  CAS  PubMed  Google Scholar 

  7. Margolin JF, Friedman JR, Meyer WK, Vissing H, Thiesen HJ, Rauscher 3rd FJ . Kruppel-associated boxes are potent transcriptional repression domains. Proc Natl Acad Sci USA 1994; 91: 4509–4513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vissing H, Meyer WK, Aagaard L, Tommerup N, Thiesen HJ . Repression of transcriptional activity by heterologous KRAB domains present in zinc finger proteins. FEBS Lett 1995; 369: 153–157.

    Article  CAS  PubMed  Google Scholar 

  9. Witzgall R, O’Leary E, Leaf A, Onaldi D, Bonventre JV . The Kruppel-associated box-A (KRAB-A) domain of zinc finger proteins mediates transcriptional repression. Proc Natl Acad Sci USA 1994; 91: 4514–4518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meiboom M, Murua Escobar H, Pentimalli F, Fusco A, Belge G, Bullerdiek J . A 3.4-kbp transcript of ZNF331 is solely expressed in follicular thyroid adenomas. Cytogenet Genome Res 2003; 101: 113–117.

    Article  CAS  PubMed  Google Scholar 

  11. Fredericks WJ, Ayyanathan K, Herlyn M, Friedman JR, Rauscher 3rd FJ . An engineered PAX3-KRAB transcriptional repressor inhibits the malignant phenotype of alveolar rhabdomyosarcoma cells harboring the endogenous PAX3-FKHR oncogene. Mol Cell Biol 2000; 20: 5019–5031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sohn JH, Yeh BI, Choi JW, Yoon J, Namkung J, Park KK et al. Repression of human telomerase reverse transcriptase using artificial zinc finger transcription factors. Mol Cancer Res 2010; 8: 246–253.

    Article  CAS  PubMed  Google Scholar 

  13. Estornes Y, Gay F, Gevrey JC, Navoizat S, Nejjari M, Scoazec JY et al. Differential involvement of destrin and cofilin-1 in the control of invasive properties of Isreco1 human colon cancer cells. Int J Cancer 2007; 121: 2162–2171.

    Article  CAS  PubMed  Google Scholar 

  14. Janknecht R . Multi-talented DEAD-box proteins and potential tumor promoters: p68 RNA helicase (DDX5) and its paralog, p72 RNA helicase (DDX17). Am J Transl Res 2010; 2: 223–234.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Jalal C, Uhlmann-Schiffler H, Stahl H . Redundant role of DEAD box proteins p68 (Ddx5) and p72/p82 (Ddx17) in ribosome biogenesis and cell proliferation. Nucleic Acids Res 2007; 35: 3590–3601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jasiulionis MG, Luchessi AD, Moreira AG, Souza PP, Suenaga AP, Correa M et al. Inhibition of eukaryotic translation initiation factor 5A (eIF5A) hypusination impairs melanoma growth. Cell Biochem Funct 2007; 25: 109–114.

    Article  CAS  PubMed  Google Scholar 

  17. Freist W, Logan DT, Gauss DH . Glycyl-tRNA synthetase. Biol Chem Hoppe Seyler 1996; 377: 343–356.

    CAS  PubMed  Google Scholar 

  18. Takeshita T, Arita T, Higuchi M, Asao H, Endo K, Kuroda H et al. STAM, signal transducing adaptor molecule, is associated with Janus kinases and involved in signaling for cell growth and c-myc induction. Immunity 1997; 6: 449–457.

    Article  CAS  PubMed  Google Scholar 

  19. Pennacchio LA, Bergmann A, Fukushima A, Okubo K, Salemi A, Lennon GG . Structure, sequence and location of the UQCRFS1 gene for the human Rieske Fe-S protein. Gene 1995; 155: 207–211.

    Article  CAS  PubMed  Google Scholar 

  20. Ohashi Y, Kaneko SJ, Cupples TE, Young SR . Ubiquinol cytochrome c reductase (UQCRFS1) gene amplification in primary breast cancer core biopsy samples. Gynecol Oncol 2004; 93: 54–58.

    Article  CAS  PubMed  Google Scholar 

  21. Kaneko SJ, Gerasimova T, Smith ST, Lloyd KO, Suzumori K, Young SR . CA125 and UQCRFS1 FISH studies of ovarian carcinoma. Gynecol Oncol 2003; 90: 29–36.

    Article  CAS  PubMed  Google Scholar 

  22. Leung SY, Ho C, Tu IP, Li R, So S, Chu KM et al. Comprehensive analysis of 19q12 amplicon in human gastric cancers. Mod Pathol 2006; 19: 854–863.

    Article  CAS  PubMed  Google Scholar 

  23. Anazawa Y, Nakagawa H, Furihara M, Ashida S, Tamura K, Yoshioka H et al. PCOTH, a novel gene overexpressed in prostate cancers, promotes prostate cancer cell growth through phosphorylation of oncoprotein TAF-Ibeta/SET. Cancer Res 2005; 65: 4578–4586.

    Article  CAS  PubMed  Google Scholar 

  24. Fan Z, Beresford PJ, Oh DY, Zhang D, Lieberman J . Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell 2003; 112: 659–672.

    Article  CAS  PubMed  Google Scholar 

  25. Wassarman DA, Steitz JA . RNA splicing. Alive with DEAD proteins. Nature 1991; 349: 463–464.

    Article  CAS  PubMed  Google Scholar 

  26. Choi YJ, Lee SG . The DEAD-box RNA helicase DDX3 interacts with DDX5, co-localizes with it in the cytoplasm during the G2/M phase of the cycle, and affects its shuttling during mRNP export. J Cell Biochem 2011; 113: 985–996; e-pub ahead of print 27 October 2011; doi: 10.1002/jcb.23428.

    Article  CAS  Google Scholar 

  27. Otsubo T, Iwaya K, Mukai Y, Mizokami Y, Serizawa H, Matsuoka T et al. Involvement of Arp2/3 complex in the process of colorectal carcinogenesis. Mod Pathol 2004; 17: 461–467.

    Article  CAS  PubMed  Google Scholar 

  28. Leszczyniecka M, Kang DC, Sarkar D, Su ZZ, Holmes M, Valerie K et al. Identification and cloning of human polynucleotide phosphorylase, hPNPase old-35, in the context of terminal differentiation and cellular senescence. Proc Natl Acad Sci USA 2002; 99: 16636–16641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sarkar D, Park ES, Emdad L, Randolph A, Valerie K, Fisher PB . Defining the domains of human polynucleotide phosphorylase (hPNPaseOLD-35) mediating cellular senescence. Mol Cell Biol 2005; 25: 7333–7343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sarkar D, Leszczyniecka M, Kang DC, Lebedeva IV, Valerie K, Dhar S et al. Down-regulation of Myc as a potential target for growth arrest induced by human polynucleotide phosphorylase (hPNPaseold-35) in human melanoma cells. J Biol Chem 2003; 278: 24542–24551.

    Article  CAS  PubMed  Google Scholar 

  31. Tiranti V, Rossi E, Ruiz-Carrillo A, Rossi G, Rocchi M, DiDonato S et al. Chromosomal localization of mitochondrial transcription factor A (TCF6), single-stranded DNA-binding protein (SSBP), and endonuclease G (ENDOG), three human housekeeping genes involved in mitochondrial biogenesis. Genomics 1995; 25: 559–564.

    Article  CAS  PubMed  Google Scholar 

  32. Huang J, Gong Z, Ghosal G, Chen J . SOSS complexes participate in the maintenance of genomic stability. Mol Cell 2009; 35: 384–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pollard KS, Serre D, Wang X, Tao H, Grundberg E, Hudson TJ et al. A genome-wide approach to identifying novel-imprinted genes. Hum Genet 2008; 122: 625–634.

    Article  CAS  PubMed  Google Scholar 

  34. Yu J, Leung WK, Ebert MP, Ng EK, Go MY, Wang HB et al. Increased expression of survivin in gastric cancer patients and in first degree relatives. Br J Cancer 2002; 87: 91–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li G, Zhang XA, Wang H, Wang X, Meng CL, Chan CY et al. Comparative proteomic analysis of mesenchymal stem cells derived from human bone marrow, umbilical cord, and placenta: implication in the migration. Proteomics 2009; 9: 20–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Basic Research Program of China (973 Program, 2010CB529305), Research Grants Council RGC CERG CUHK (473008), CUHK Focused Investment Grant (1903026) and RFCID (10090942, 11100022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Yu or J J Y Sung.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J., Liang, Q., Wang, J. et al. Zinc-finger protein 331, a novel putative tumor suppressor, suppresses growth and invasiveness of gastric cancer. Oncogene 32, 307–317 (2013). https://doi.org/10.1038/onc.2012.54

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.54

Keywords

This article is cited by

Search

Quick links