Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Interaction with colon cancer cells hyperactivates TGF-β signaling in cancer-associated fibroblasts

Abstract

The interaction between epithelial cancer cells and cancer-associated fibroblasts (CAFs) has a major role in cancer progression and eventually in metastasis. In colorectal cancer (CRC), CAFs are present in high abundance, but their origin and functional interaction with epithelial tumor cells has not been elucidated. In this study we observed strong activation of the transforming growth factor-β (TGF-β)/Smad signaling pathway in CRC CAFs, accompanied by decreased signaling in epithelial tumor cells. We evaluated the TGF-β1 response and the expression of target genes including matrix metalloproteinases (MMPs) and plasminogen activator inhibitor (PAI)-1 of various epithelial CRC cell lines and primary CAFs in vitro. TGF-β1 stimulation caused high upregulation of MMPs, PAI-1 and TGF-β1 itself. Next we showed that incubation of CAFs with conditioned medium (CM) from epithelial cancer cells led to hyperactivation of the TGF-β signaling pathway, enhanced expression of target genes like PAI-1, and the expression of α-smooth muscle actin (α-SMA). We propose that the interaction of tumor cells with resident fibroblasts results in hyperactivated TGF-β1 signaling and subsequent transdifferentiation of the fibroblasts into α-SMA-positive CAFs. In turn this leads to cumulative production of TGF-β and proteinases within the tumor microenvironment, creating a cancer-promoting feedback loop.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. De Wever O, Mareel M . Role of tissue stroma in cancer cell invasion. J Pathol 2003; 200: 429–447.

    Article  CAS  Google Scholar 

  2. Ruiter D, Bogenrieder T, Elder D, Herlyn M . Melanoma-stroma interactions: structural and functional aspects. Lancet Oncol 2002; 3: 35–43.

    Article  CAS  Google Scholar 

  3. Micke P, Ostman A . Tumour-stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer 2004; 45 (Suppl 2): S163–S175.

    Article  Google Scholar 

  4. Park CC, Bissell MJ, Barcellos-Hoff MH . The influence of the microenvironment on the malignant phenotype. Mol Med Today 2000; 6: 324–329.

    Article  CAS  Google Scholar 

  5. Powell DW, Adegboyega PA, Di Mari JF, Mifflin RC . Epithelial cells and their neighbors I. Role of intestinal myofibroblasts in development, repair, and cancer. Am J Physiol Gastrointest Liver Physiol 2005; 289: G2–G7.

    Article  CAS  Google Scholar 

  6. Kalluri R, Zeisberg M . Fibroblasts in cancer. Nat Rev Cancer 2006; 6: 392–401.

    Article  CAS  Google Scholar 

  7. Adegboyega PA, Mifflin RC, DiMari JF, Saada JI, Powell DW . Immunohistochemical study of myofibroblasts in normal colonic mucosa, hyperplastic polyps, and adenomatous colorectal polyps. Arch Pathol Lab Med 2002; 126: 829–836.

    PubMed  Google Scholar 

  8. Lieubeau B, Heymann MF, Henry F, Barbieux I, Meflah K, Gregoire M . Immunomodulatory effects of tumor-associated fibroblasts in colorectal-tumor development. Int J Cancer 1999; 81: 629–636.

    Article  CAS  Google Scholar 

  9. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G . Transforming growth factor-β1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 1993; 122: 103–111.

    Article  CAS  Google Scholar 

  10. Blobe GC, Schiemann WP, Lodish HF . Role of transforming growth factor-β in human disease. N Engl J Med 2000; 342: 1350–1358.

    Article  CAS  Google Scholar 

  11. Derynck R, Akhurst RJ, Balmain A . TGF-β signaling in tumor suppression and cancer progression. Nat Genet 2001; 29: 117–129.

    Article  CAS  Google Scholar 

  12. Akhurst RJ, Derynck R . TGF-β signaling in cancer-a double-edged sword. Trends Cell Biol 2001; 11: S44–S51.

    CAS  Google Scholar 

  13. ten Dijke P, Arthur HM . Extracellular control of TGF-β signalling in vascular development and disease. Nat Rev Mol Cell Biol 2007; 8: 857–869.

    Article  CAS  Google Scholar 

  14. Yoshinaga K, Obata H, Jurukovski V, Mazzieri R, Chen Y, Zilberberg L et al. Perturbation of transforming growth factor (TGF)-β1 association with latent TGF-β binding protein yields inflammation and tumors. Proc Natl Acad Sci USA 2008; 105: 18758–18763.

    Article  CAS  Google Scholar 

  15. Lyons RM, Gentry LE, Purchio AF, Moses HL . Mechanism of activation of latent recombinant transforming growth factor β1 by plasmin. J Cell Biol 1990; 110: 1361–1367.

    Article  CAS  Google Scholar 

  16. Jenkins G . The role of proteases in transforming growth factor-β activation. Int J Biochem Cell Biol 2008; 40: 1068–1078.

    Article  CAS  Google Scholar 

  17. Annes JP, Munger JS, Rifkin DB . Making sense of latent TGF-β activation. J Cell Sci 2003; 116: 217–224.

    Article  CAS  Google Scholar 

  18. Meulmeester E, ten Dijke P . The dynamic roles of TGF-β in cancer. J Pathol 2011; 223: 205–218.

    Article  CAS  Google Scholar 

  19. Mesker WE, Junggeburt JM, Szuhai K, de Heer P, Morreau H, Tanke HJ et al. The carcinoma-stromal ratio of colon carcinoma is an independent factor for survival compared to lymph node status and tumor stage. Cell Oncol 2007; 29: 387–398.

    PubMed  PubMed Central  Google Scholar 

  20. Pourreyron C, Dumortier J, Ratineau C, Nejjari M, Beatrix O, Jacquier MF et al. Age-dependent variations of human and rat colon myofibroblasts in culture: Influence on their functional interactions with colon cancer cells. Int J Cancer 2003; 104: 28–35.

    Article  CAS  Google Scholar 

  21. Huet E, Vallee B, Szul D, Verrecchia F, Mourah S, Jester JV et al. Extracellular matrix metalloproteinase inducer/CD147 promotes myofibroblast differentiation by inducing α-smooth muscle actin expression and collagen gel contraction: implications in tissue remodeling. FASEB J 2008; 22: 1144–1154.

    Article  CAS  Google Scholar 

  22. Kankuri E, Cholujova D, Comajova M, Vaheri A, Bizik J . Induction of hepatocyte growth factor/scatter factor by fibroblast clustering directly promotes tumor cell invasiveness. Cancer Res 2005; 65: 9914–9922.

    Article  CAS  Google Scholar 

  23. Kankuri E, Babusikova O, Hlubinova K, Salmenpera P, Boccaccio C, Lubitz W et al. Fibroblast nemosis arrests growth and induces differentiation of human leukemia cells. Int J Cancer 2008; 122: 1243–1252.

    Article  CAS  Google Scholar 

  24. Elenbaas B, Weinberg RA . Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res 2001; 264: 169–184.

    Article  CAS  Google Scholar 

  25. Cirri P, Chiarugi P . Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev 2011; 31: 195–208.

    Article  Google Scholar 

  26. Ronnov-Jessen L, Petersen OW, Koteliansky VE, Bissell MJ . The origin of the myofibroblasts in breast cancer. recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest 1995; 95: 859–873.

    Article  CAS  Google Scholar 

  27. Lewis MP, Lygoe KA, Nystrom ML, Anderson WP, Speight PM, Marshall JF et al. Tumour-derived TGF-β1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br J Cancer 2004; 90: 822–832.

    Article  CAS  Google Scholar 

  28. Leivonen SK, Kahari VM . Transforming growth factor-β signaling in cancer invasion and metastasis. Int J Cancer 2007; 121: 2119–2124.

    Article  CAS  Google Scholar 

  29. Bierie B, Moses HL . Tumour microenvironment: TGF-β: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 2006; 6: 506–520.

    Article  CAS  Google Scholar 

  30. Munoz NM, Upton M, Rojas A, Washington MK, Lin L, Chytil A et al. Transforming growth factor β receptor type II inactivation induces the malignant transformation of intestinal neoplasms initiated by Apc mutation. Cancer Res 2006; 66: 9837–9844.

    Article  CAS  Google Scholar 

  31. Woodford-Richens KL, Rowan AJ, Gorman P, Halford S, Bicknell DC, Wasan HS et al. SMAD4 mutations in colorectal cancer probably occur before chromosomal instability, but after divergence of the microsatellite instability pathway. Proc Natl Acad Sci USA 2001; 98: 9719–9723.

    Article  CAS  Google Scholar 

  32. Hawinkels LJ, Verspaget HW, van Duijn W, van der Zon JM, Zuidwijk K, Kubben FJ et al. Tissue level, activation and cellular localisation of TGF-β1 and association with survival in gastric cancer patients. Br J Cancer 2007; 97: 398–404.

    Article  CAS  Google Scholar 

  33. Barcellos-Hoff MH, Ewan KB . Transforming growth factor-β and breast cancer: Mammary gland development. Breast Cancer Res 2000; 2: 92–99.

    Article  CAS  Google Scholar 

  34. Hawinkels L, Verspaget HW, van der Reijden JJ, Van der Zon J, Verheijen JH, Hommes D et al. Active TGF-β1 correlates with myofibroblasts and malignancy in the colorectal adenoma-carcinoma sequence. Cancer Sci 2009; 100: 663–670.

    Article  CAS  Google Scholar 

  35. Shephard P, Martin G, Smola-Hess S, Brunner G, Krieg T, Smola H . Myofibroblast differentiation is induced in keratinocyte-fibroblast co-cultures and is antagonistically regulated by endogenous transforming growth factor-β and interleukin-1. Am J Pathol 2004; 164: 2055–2066.

    Article  CAS  Google Scholar 

  36. Kunz-Schughart LA, Heyder P, Schroeder J, Knuechel R . A heterologous 3-D coculture model of breast tumor cells and fibroblasts to study tumor-associated fibroblast differentiation. Exp Cell Res 2001; 266: 74–86.

    Article  CAS  Google Scholar 

  37. Ge G, Greenspan DS . BMP1 controls TGFβ1 activation via cleavage of latent TGFβ-binding protein. J Cell Biol 2006; 175: 111–120.

    Article  CAS  Google Scholar 

  38. Wipff PJ, Hinz B . Integrins and the activation of latent transforming growth factor β1 - An intimate relationship. Eur J Cell Biol 2008; 87: 601–615.

    Article  CAS  Google Scholar 

  39. Nishimura SL . Integrin-mediated transforming growth factor-β activation, a potential therapeutic target in fibrogenic disorders. Am J Pathol 2009; 175: 1362–1370.

    Article  CAS  Google Scholar 

  40. Barcellos-Hoff MH, Derynck R, Tsang ML, Weatherbee JA . Transforming growth factor-β activation in irradiated murine mammary gland. J Clin Invest 1994; 93: 892–899.

    Article  CAS  Google Scholar 

  41. Hawinkels LJ, ten Dijke P . Exploring anti-TGF-β therapies in cancer and fibrosis. Growth Factors 2011; 29: 140–152.

    Article  CAS  Google Scholar 

  42. Hawinkels LJ, Zuidwijk K, Verspaget HW, Jonge-Muller ES, Duijn W, Ferreira V et al. VEGF release by MMP-9 mediated heparan sulphate cleavage induces colorectal cancer angiogenesis. Eur J Cancer 2008; 44: 1904–1913.

    Article  CAS  Google Scholar 

  43. Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM . Direct binding of Smad3 and Smad4 to critical TGF β-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 1998; 17: 3091–3100.

    Article  CAS  Google Scholar 

  44. Dooley S, Hamzavi J, Breitkopf K, Wiercinska E, Said HM, Lorenzen J et al. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology 2003; 125: 178–191.

    Article  CAS  Google Scholar 

  45. Hawinkels LJ, Kuiper P, Wiercinska E, Verspaget HW, Liu Z, Pardali E et al. Matrix metalloproteinase-14 (MT1-MMP)-mediated endoglin shedding inhibits tumor angiogenesis. Cancer Res 2010; 70: 4141–4150.

    Article  CAS  Google Scholar 

  46. Persson U, Izumi H, Souchelnytskyi S, Itoh S, Grimsby S, Engstrom U et al. The L45 loop in type I receptors for TGF-β family members is a critical determinant in specifying Smad isoform activation. FEBS Lett 1998; 434: 83–87.

    Article  CAS  Google Scholar 

  47. Lindeman JH, Hanemaaijer R, Mulder A, Dijkstra PD, Szuhai K, Bromme D et al. Cathepsin K is the principal protease in giant cell tumor of bone. Am J Pathol 2004; 165: 593–600.

    Article  CAS  Google Scholar 

  48. Sier CF, Hawinkels LJ, Zijlmans HJ, Zuidwijk K, de Jonge-Muller ES, Ferreira V et al. Endothelium specific matrilysin (MMP-7) expression in human cancers. Matrix Biol 2008; 27: 267–271.

    CAS  PubMed  Google Scholar 

  49. Pardali E, van der Schaft DW, Wiercinska E, Gorter A, Hogendoorn PC, Griffioen AW et al. Critical role of endoglin in tumor cell plasticity of Ewing sarcoma and melanoma. Oncogene 2011; 30: 334–345.

    Article  CAS  Google Scholar 

  50. Stolle K, Schnoor M, Fuellen G, Spitzer M, Engel T, Spener F et al. Cloning, cellular localization, genomic organization, and tissue-specific expression of the TGFβ1-inducible SMAP-5 gene. Gene 2005; 351: 119–130.

    Article  CAS  Google Scholar 

  51. Hawinkels LJ, van Rossenberg SM, de Jonge-Muller ES, Molenaar TJ, Appeldoorn CC, van Berkel TJ et al. Efficient degradation-aided selection of protease inhibitors by phage display. Biochem Biophys Res Commun 2007; 364: 549–555.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr R Hanemaaijer (TNO Quality of Life BioSciences, Leiden, The Netherlands) for helpful suggestions and reagents. Eveline de Jonge-Muller (Department of Gastroenterology-Hepatology, LUMC), Adri Mulder-Stapel (TNO) and Gabi van Pelt (Department Surgery, LUMC) are acknowledged for excellent technical support. This work was supported by the EC Tumor-host genomic project, the Centre for Biomedical Genetics, the Swedish Cancer Fonden 090773 (EW, PtD) and the Bas Mulder Award 2011 (LJACH, MP, UL2011-5051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L J A C Hawinkels.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawinkels, L., Paauwe, M., Verspaget, H. et al. Interaction with colon cancer cells hyperactivates TGF-β signaling in cancer-associated fibroblasts. Oncogene 33, 97–107 (2014). https://doi.org/10.1038/onc.2012.536

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.536

Keywords

This article is cited by

Search

Quick links