Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TRIM11 is overexpressed in high-grade gliomas and promotes proliferation, invasion, migration and glial tumor growth

Abstract

TRIM11 (tripartite motif-containing protein 11), an E3 ubiquitin ligase, is known to be involved in the development of the central nervous system. However, very little is known regarding the role of TRIM11 in cancer biology. Here, we examined the expression profile of TRIM11, along with two stem cell markers CD133 and nestin, in multiple glioma patient specimens, glioma primary cultures derived from tumors taken at surgery and normal neural stem/progenitor cells (NSCs). The oncogenic function of TRIM11 in glioma biology was investigated by knockdown and/or overexpression in vitro and in vivo experiments. Our results showed that TRIM11 expression levels were upregulated in malignant glioma specimens and in high-grade glioma-derived primary cultures, whereas remaining low in glioblastoma multiforme (GBM) stable cell lines, low-grade glioma-derived primary cultures and NSCs. The expression pattern of TRIM11 strongly correlated with that of CD133 and nestin and differentiation status of malignant glioma cells. Knock down of TRIM11 inhibited proliferation, migration and invasion of GBM cells, significantly decreased epidermal growth factor receptor (EGFR) levels and mitogen-activated protein kinase activity, and downregulated HB-EGF (heparin-binding EGF-like growth factor) mRNA levels. Meanwhile, TRIM11 overexpression promoted a stem-like phenotype in vitro (tumorsphere formation) and enhanced glial tumor growth in immunocompromised mice. These findings suggest that TRIM11 might be an indicator of glioma malignancy and has an oncogenic function mediated through the EGFR signaling pathway. TRIM11 overexpression potentially leads to a more aggressive glioma phenotype, along with increased malignant tumor growth and poor survival. Taken together, clarification of the biological function of TRIM11 and pathways it affects may provide novel therapeutic strategies for treating malignant glioma patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Gladson CL, Prayson RA, Liu WM . The pathobiology of glioma tumors. Annu Rev Pathol 2010; 5: 33–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wen PY, Kesari S . Malignant gliomas in adults. N Engl J Med 2008; 359: 492–507.

    Article  CAS  PubMed  Google Scholar 

  3. von Deimling A, Korshunov A, Hartmann C . The next generation of glioma biomarkers: MGMT methylation, BRAF fusions and IDH1 mutations. Brain Pathol 2011; 21: 74–87.

    Article  CAS  PubMed  Google Scholar 

  4. Ma YH, Mentlein R, Knerlich F, Kruse ML, Mehdorn HM, Held-Feindt J . Expression of stem cell markers in human astrocytomas of different WHO grades. J Neurooncol 2008; 86: 31–45.

    Article  PubMed  Google Scholar 

  5. Zhang M, Song T, Yang L, Chen R, Wu L, Yang Z et al. Nestin and CD133: valuable stem cell-specific markers for determining clinical outcome of glioma patients. J Exp Clin Cancer Res 2008; 27: 85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Singh S, Clarke I, Terasaki M, Bonn V, Hawkins C, Squire J et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63: 5821–5828.

    CAS  PubMed  Google Scholar 

  7. Singh S, Hawkins C, Clarke I, Squire J, Bayani J, Hide T et al. Identification of human brain tumour initiating cells. Nature 2004; 432: 396–401.

    Article  CAS  PubMed  Google Scholar 

  8. Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 2012; 488: 522–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444: 756–760.

    Article  CAS  PubMed  Google Scholar 

  10. Li Z, Wang H, Eyler CE, Hjelmeland AB, Rich JN . Turning cancer stem cells inside out: an exploration of glioma stem cell signaling pathways. J Biol Chem 2009; 284: 16705–16709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dey M, Ulasov IV, Tyler MA, Sonabend AM, Lesniak MS . Cancer stem cells: the final frontier for glioma virotherapy. Stem Cell Rev 2011; 7: 119–129.

    Article  PubMed Central  Google Scholar 

  12. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 2000; 97: 14720–14725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zimmerman L, Parr B, Lendahl U, Cunningham M, McKay R, Gavin B et al. Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron 1994; 12: 11–24.

    Article  CAS  PubMed  Google Scholar 

  14. Gong X, Schwartz PH, Linskey ME, Bota DA . Neural stem/progenitors and glioma stem-like cells have differential sensitivity to chemotherapy. Neurology 2011; 76: 1126–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmidinger M, Linzmayer L, Becherer A, Fazeny-Doemer B, Fakhrai N, Prayer D et al. Psychometric- and quality-of-life assessment in long-term glioblastoma survivors. J Neurooncol 2003; 63: 55–61.

    Article  PubMed  Google Scholar 

  16. Corn BW, Wang M, Fox S, Michalski J, Purdy J, Simpson J et al. Health related quality of life and cognitive status in patients with glioblastoma multiforme receiving escalating doses of conformal three dimensional radiation on RTOG 98-03. J Neurooncol 2009; 95: 247–257.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L et al. The tripartite motif family identifies cell compartments. EMBO J 2001; 20: 2140–2151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saurin AJ, Borden KL, Boddy MN, Freemont PS . Does this have a familiar RING? Trends Biochem Sci 1996; 21: 208–214.

    Article  CAS  PubMed  Google Scholar 

  19. Borden KL . RING fingers and B-boxes: zinc-binding protein-protein interaction domains. Biochem Cell Biol 1998; 76: 351–358.

    Article  CAS  PubMed  Google Scholar 

  20. Hatakeyama S . TRIM proteins and cancer. Nat Rev Cancer 2011; 11: 792–804.

    Article  CAS  PubMed  Google Scholar 

  21. Niikura T, Hashimoto Y, Tajima H, Ishizaka M, Yamagishi Y, Kawasumi M et al. A tripartite motif protein TRIM11 binds and destabilizes Humanin, a neuroprotective peptide against Alzheimer’s disease-relevant insults. Eur J Neurosci 2003; 17: 1150–1158.

    Article  PubMed  Google Scholar 

  22. Ishikawa H, Tachikawa H, Miura Y, Takahashi N . TRIM11 binds to and destabilizes a key component of the activator-mediated cofactor complex (ARC105) through the ubiquitin-proteasome system. FEBS Lett 2006; 580: 4784–4792.

    Article  CAS  PubMed  Google Scholar 

  23. Tuoc TC, Stoykova A . Trim11 modulates the function of neurogenic transcription factor Pax6 through ubiquitin-proteosome system. Genes Dev 2008; 22: 1972–1986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hong SJ, Chae H, Lardaro T, Hong S, Kim KS . Trim11 increases expression of dopamine beta-hydroxylase gene by interacting with Phox2b. Biochem Biophys Res Commun 2008; 368: 650–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sanai N, Alvarez-Buylla A, Berger MS . Neural stem cells and the origin of gliomas. N Engl J Med 2005; 353: 811–822.

    Article  CAS  PubMed  Google Scholar 

  26. Schwartz PH, Bryant PJ, Fuja TJ, Su H, O'Dowd DK, Klassen H . Isolation and characterization of neural progenitor cells from post-mortem human cortex. J Neurosci Res 2003; 74: 838–851.

    Article  CAS  PubMed  Google Scholar 

  27. Kurihara H, Zama A, Tamura M, Takeda J, Sasaki T, Takeuchi T . Glioma/glioblastoma-specific adenoviral gene expression using the nestin gene regulator. Gene Ther 2000; 7: 686–693.

    Article  CAS  PubMed  Google Scholar 

  28. Griguer CE, Oliva CR, Gobin E, Marcorelles P, Benos DJ, Lancaster JR et al. CD133 is a marker of bioenergetic stress in human glioma. PLoS One 2008; 3: e3655.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhou XD, Wang XY, Qu FJ, Zhong YH, Lu XD, Zhao P et al. Detection of cancer stem cells from the C6 glioma cell line. J Int Med Res 2009; 37: 503–510.

    Article  CAS  PubMed  Google Scholar 

  30. Lim DA, Cha S, Mayo MC, Chen MH, Keles E, VandenBerg S et al. Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro Oncol 2007; 9: 424–429.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rao RD, Uhm JH, Krishnan S, James CD . Genetic and signaling pathway alterations in glioblastoma: relevance to novel targeted therapies. Front Biosci 2003; 8: e270–e280.

    Article  CAS  PubMed  Google Scholar 

  32. Roberts PJ, Der CJ . Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007; 26: 3291–3310.

    Article  CAS  PubMed  Google Scholar 

  33. Schlessinger J . Cell signaling by receptor tyrosine kinases. Cell 2000; 103: 211–225.

    Article  CAS  PubMed  Google Scholar 

  34. Eramo A, Ricci-Vitiani L, Zeuner A, Pallini R, Lotti F, Sette G et al. Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ 2006; 13: 1238–1241.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao C, Deng W, Gage FH . Mechanisms and functional implications of adult neurogenesis. Cell 2008; 132: 645–660.

    Article  CAS  PubMed  Google Scholar 

  36. Kordes C, Sawitza I, Muller-Marbach A, Ale-Agha N, Keitel V, Klonowski-Stumpe H et al. CD133+ hepatic stellate cells are progenitor cells. Biochem Biophys Res Commun 2007; 352: 410–417.

    Article  CAS  PubMed  Google Scholar 

  37. Sherman JH, Redpath GT, Redick JA, Purow BW, Laws ER, Jane JA et al. A novel fixative for immunofluorescence staining of CD133-positive glioblastoma stem cells. J Neurosci Methods 2011; 198: 99–102.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fredens K, Dahl R, Venge P . An immunofluorescent method for a specific demonstration of granulocytes and some of their proteins (ECP and CCP). Histochemistry 1986; 84: 247–250.

    Article  CAS  PubMed  Google Scholar 

  39. Bigner SH, Humphrey PA, Wong AJ, Vogelstein B, Mark J, Friedman HS et al. Characterization of the epidermal growth factor receptor in human glioma cell lines and xenografts. Cancer Res 1990; 50: 8017–8022.

    CAS  PubMed  Google Scholar 

  40. Raab G, Klagsbrun M . Heparin-binding EGF-like growth factor. Biochim Biophys Acta 1997; 1333: F179–F199.

    CAS  PubMed  Google Scholar 

  41. Suo Z, Risberg B, Karlsson MG, Villman K, Skovlund E, Nesland JM . The expression of EGFR family ligands in breast carcinomas. Int J Surg Pathol 2002; 10: 91–99.

    Article  CAS  PubMed  Google Scholar 

  42. Tarbe N, Losch S, Burtscher H, Jarsch M, Weidle UH . Identification of rat pancreatic carcinoma genes associated with lymphogenous metastasis. Anticancer Res 2002; 22: 2015–2027.

    CAS  PubMed  Google Scholar 

  43. Mishima K, Higashiyama S, Asai A, Yamaoka K, Nagashima Y, Taniguchi N et al. Heparin-binding epidermal growth factor-like growth factor stimulates mitogenic signaling and is highly expressed in human malignant gliomas. Acta Neuropathol 1998; 96: 322–328.

    Article  CAS  PubMed  Google Scholar 

  44. McCarthy SA, Samuels ML, Pritchard CA, Abraham JA, McMahon M . Rapid induction of heparin-binding epidermal growth factor/diphtheria toxin receptor expression by Raf and Ras oncogenes. Genes Dev 1995; 9: 1953–1964.

    Article  CAS  PubMed  Google Scholar 

  45. Ongusaha PP, Kwak JC, Zwible AJ, Macip S, Higashiyama S, Taniguchi N et al. HB-EGF is a potent inducer of tumor growth and angiogenesis. Cancer Res 2004; 64: 5283–5290.

    Article  CAS  PubMed  Google Scholar 

  46. Pistollato F, Chen H-L, Rood BR, Zhang H-Z, D'Avella D, Denaro L et al. Hypoxia and HIF1alpha repress the differentiative effects of BMPs in high-grade glioma. Stem Cells 2009; 27: 7–17.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Xing Gong for the preparation of glioma primary cultures, Dr Ronald C Kim for the neuropathological diagnosis of tumor samples and Dr Abhishek Chaturbedi for the organization of the tumor list used in the study. This work was supported by research funds donated by Ralph and Suzanne Stern and the Community Foundation of Jewish Federation. This study was also supported, in part, by start-up funds to DAB from the University of California, Irvine and the UCI Cancer Center Award Number P30CA062203 from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D A Bota.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di, K., Linskey, M. & Bota, D. TRIM11 is overexpressed in high-grade gliomas and promotes proliferation, invasion, migration and glial tumor growth. Oncogene 32, 5038–5047 (2013). https://doi.org/10.1038/onc.2012.531

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.531

Keywords

This article is cited by

Search

Quick links