Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification of pY654-β-catenin as a critical co-factor in hypoxia-inducible factor-1α signaling and tumor responses to hypoxia

Abstract

Hypoxia is linked to epithelial–mesenchymal transition (EMT) and tumor progression in numerous carcinomas. Responses to hypoxia are thought to operate via hypoxia-inducible factors (HIFs), but the importance of co-factors that regulate HIF signaling within tumors is not well understood. Here, we elucidate a signaling pathway that physically and functionally couples tyrosine phosphorylation of β-catenin to HIF1α signaling and HIF1α-mediated tumor EMT. Primary human lung adenocarcinomas accumulate pY654-β-catenin and HIF1α. All pY654-β-catenin, and only the tyrosine phosphorylated form, was found complexed with HIF1α and active Src, both within the human tumors and in lung tumor cell lines exposed to hypoxia. Phosphorylation of Y654, generated by hypoxia mediated, reactive oxygen species (ROS)-dependent Src kinase activation, was required for β-catenin to interact with HIF1α and Src, to promote HIF1α transcriptional activity, and for hypoxia-induced EMT. Mice bearing hypoxic pancreatic islet adenomas, generated by treatment with anti-vascular endothelial growth factor antibodies, accumulate HIF1α/pY654-β-catenin complexes and develop an invasive phenotype. Concurrent administration of the ROS inhibitor N-acetylcysteine abrogated β-catenin/HIF pathway activity and restored adenoma architecture. Collectively, the findings implicate accumulation of pY654-β-catenin specifically complexed to HIF1α and Src kinase as critically involved in HIF1α signaling and tumor invasion. The findings also suggest that targeting ROS-dependent aspects of the pY654-β-catenin/ HIF1α pathway may attenuate untoward biological effects of anti-angiogenic agents and tumor hypoxia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Polyak K, Weinberg RA . Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9: 265–273.

    Article  CAS  PubMed  Google Scholar 

  2. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004; 117: 927–939.

    Article  CAS  PubMed  Google Scholar 

  3. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  CAS  PubMed  Google Scholar 

  4. Turley EA, Veiseh M, Radisky DC, Bissell MJ . Mechanisms of disease: epithelial-mesenchymal transition–does cellular plasticity fuel neoplastic progression? Nat Clin Pract Oncol 2008; 5: 280–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lu X, Kang Y . Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res 2010; 16: 5928–5935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hung JJ, Yang MH, Hsu HS, Hsu WH, Liu JS, Wu KJ . Prognostic significance of hypoxia-inducible factor-1alpha, TWIST1 and Snail expression in resectable non-small cell lung cancer. Thorax 2009; 64: 1082–1089.

    Article  PubMed  Google Scholar 

  7. Ruan K, Song G, Ouyang G . Role of hypoxia in the hallmarks of human cancer. J Cell Biochem 2009; 107: 1053–1062.

    Article  CAS  PubMed  Google Scholar 

  8. De Bock K, Mazzone M, Carmeliet P . Antiangiogenic therapy, hypoxia, and metastasis: risky liaisons, or not? Nat Rev Clin Oncol 2011; 8: 393–404.

    Article  CAS  PubMed  Google Scholar 

  9. Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 2009; 15: 220–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Klimova T, Chandel NS . Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ 2008; 15: 660–666.

    Article  CAS  PubMed  Google Scholar 

  11. Cannito S, Novo E, Compagnone A, Valfre di Bonzo L, Busletta C, Zamara E et al. Redox mechanisms switch on hypoxia-dependent epithelial-mesenchymal transition in cancer cells. Carcinogenesis 2008; 29: 2267–2278.

    Article  CAS  PubMed  Google Scholar 

  12. Krishnamachary B, Zagzag D, Nagasawa H, Rainey K, Okuyama H, Baek JH et al. Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res 2006; 66: 2725–2731.

    Article  CAS  PubMed  Google Scholar 

  13. Luo D, Wang J, Li J, Post M . Mouse snail is a target gene for HIF. Mol Cancer Res 2011; 9: 234–245.

    Article  CAS  PubMed  Google Scholar 

  14. Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ et al. Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 2008; 10: 295–305.

    Article  CAS  PubMed  Google Scholar 

  15. Kaluz S, Kaluzova M, Stanbridge EJ . Regulation of gene expression by hypoxia: integration of the HIF-transduced hypoxic signal at the hypoxia-responsive element. Clin Chim Acta 2008; 395: 6–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaidi A, Williams AC, Paraskeva C . Interaction between beta-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nat Cell Biol 2007; 9: 210–217.

    Article  CAS  PubMed  Google Scholar 

  17. Stemmer V, de Craene B, Berx G, Behrens J . Snail promotes Wnt target gene expression and interacts with beta-catenin. Oncogene 2008; 27: 5075–5080.

    Article  CAS  PubMed  Google Scholar 

  18. Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH et al. A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol 2006; 8: 1398–1406.

    Article  CAS  PubMed  Google Scholar 

  19. Morin PJ . beta-catenin signaling and cancer. Bioessays 1999; 21: 1021–1030.

    Article  CAS  PubMed  Google Scholar 

  20. Polakis P . The oncogenic activation of beta-catenin. Curr Opin Genet Dev 1999; 9: 15–21.

    Article  CAS  PubMed  Google Scholar 

  21. Roura S, Miravet S, Piedra J, Garcia de Herreros A, Dunach M . Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem 1999; 274: 36734–36740.

    Article  CAS  PubMed  Google Scholar 

  22. Kim KK, Wei Y, Szekeres C, Kugler MC, Wolters PJ, Hill ML et al. Epithelial cell alpha3beta1 integrin links beta-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis. J Clin Invest 2009; 119: 213–224.

    CAS  PubMed  Google Scholar 

  23. Kim Y, Kugler MC, Wei Y, Kim KK, Li X, Brumwell AN et al. Integrin alpha3beta1-dependent beta-catenin phosphorylation links epithelial Smad signaling to cell contacts. J Cell Biol 2009; 184: 309–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ulsamer A, Wei Y, Kim KK, Tan K, Wheeler S, Xi Y et al. Axin pathway activity regulates in vivo pY654-beta-catenin accumulation and pulmonary fibrosis. J Biol Chem 2012; 287: 5164–5172.

    Article  CAS  PubMed  Google Scholar 

  25. Lilien J, Balsamo J . The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol 2005; 17: 459–465.

    Article  CAS  PubMed  Google Scholar 

  26. Zeng G, Apte U, Micsenyi A, Bell A, Monga SP . Tyrosine residues 654 and 670 in beta-catenin are crucial in regulation of Met-beta-catenin interactions. Exp Cell Res 2006; 312: 3620–3630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Karni R, Dor Y, Keshet E, Meyuhas O, Levitzki A . Activated pp60c-Src leads to elevated hypoxia-inducible factor (HIF)-1alpha expression under normoxia. J Biol Chem 2002; 277: 42919–42925.

    Article  CAS  PubMed  Google Scholar 

  28. Jiang BH, Agani F, Passaniti A, Semenza GL . V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res 1997; 57: 5328–5335.

    CAS  PubMed  Google Scholar 

  29. Pham NA, Magalhaes JM, Do T, Schwock J, Dhani N, Cao PJ et al. Activation of Src and Src-associated signaling pathways in relation to hypoxia in human cancer xenograft models. Int J Cancer 2009; 124: 280–286.

    Article  CAS  PubMed  Google Scholar 

  30. Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM . Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 2003; 3: 347–361.

    Article  PubMed  Google Scholar 

  31. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 2010; 467: 1109–1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou G, Dada LA, Wu M, Kelly A, Trejo H, Zhou Q et al. Hypoxia-induced alveolar epithelial-mesenchymal transition requires mitochondrial ROS and hypoxia-inducible factor 1. Am J Physiol Lung Cell Mol Physiol 2009; 297: L1120–L1130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Littlepage LE, Sternlicht MD, Rougier N, Phillips J, Gallo E, Yu Y et al. Matrix metalloproteinases contribute distinct roles in neuroendocrine prostate carcinogenesis, metastasis, and angiogenesis progression. Cancer Res 2010; 70: 2224–2234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lluis JM, Buricchi F, Chiarugi P, Morales A, Fernandez-Checa JC . Dual role of mitochondrial reactive oxygen species in hypoxia signaling: activation of nuclear factor-{kappa}B via c-SRC and oxidant-dependent cell death. Cancer Res 2007; 67: 7368–7377.

    Article  CAS  PubMed  Google Scholar 

  35. Setsukinai K, Urano Y, Kakinuma K, Majima HJ, Nagano T . Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J Biol Chem 2003; 278: 3170–3175.

    Article  CAS  PubMed  Google Scholar 

  36. Casanovas O, Hicklin DJ, Bergers G, Hanahan D . Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 2005; 8: 299–309.

    Article  CAS  PubMed  Google Scholar 

  37. Sennino B, Ishiguro-Oonuma T, Wei Y, Naylor RM, Williamson CW, Bhagwandin V et al. Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov 2012; 2: 270–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jones S, Chen WD, Parmigiani G, Diehl F, Beerenwinkel N, Antal T et al. Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci USA 2008; 105: 4283–4288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim WY, Perera S, Zhou B, Carretero J, Yeh JJ, Heathcote SA et al. HIF2alpha cooperates with RAS to promote lung tumorigenesis in mice. J Clin Invest 2009; 119: 2160–2170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lu KV, Chang JP, Parachoniak CA, Pandika MM, Aghi MK, Meyronet D et al. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell 2012; 22: 21–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lou YW, Chen YY, Hsu SF, Chen RK, Lee CL, Khoo KH et al. Redox regulation of the protein tyrosine phosphatase PTP1B in cancer cells. FEBS J 2008; 275: 69–88.

    Article  CAS  PubMed  Google Scholar 

  42. Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W et al. Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature 2011; 480: 118–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grepin R, Pages G . Molecular mechanisms of resistance to tumour anti-angiogenic strategies. J Oncol 2010; 2010: 835680.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SA, Fack F et al. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci USA 2011; 108: 3749–3754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mao W, Irby R, Coppola D, Fu L, Wloch M, Turner J et al. Activation of c-Src by receptor tyrosine kinases in human colon cancer cells with high metastatic potential. Oncogene 1997; 15: 3083–3090.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Roshni Ray, Mazen Sidani, Toshina Ishiguro-Oonuma, Casey W Williamson, Thomas Kim, Yonghyun Kim, Yang Gao and Ronald Tsang for technical assistance; and Drs Miguel Ramalho Santos and Martin Brown for generous gifts of reagents. This work was supported by NIH Grants to HL-44712 and CA-125564 (HAC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y Wei or H A Chapman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xi, Y., Wei, Y., Sennino, B. et al. Identification of pY654-β-catenin as a critical co-factor in hypoxia-inducible factor-1α signaling and tumor responses to hypoxia. Oncogene 32, 5048–5057 (2013). https://doi.org/10.1038/onc.2012.530

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.530

Keywords

This article is cited by

Search

Quick links