Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ableson kinases negatively regulate invadopodia function and invasion in head and neck squamous cell carcinoma by inhibiting an HB-EGF autocrine loop

Abstract

Head and neck squamous cell carcinoma (HNSCC) has a proclivity for locoregional invasion. HNSCC mediates invasion in part through invadopodia-based proteolysis of the extracellular matrix (ECM). Activation of Src, Erk1/2, Abl and Arg downstream of epidermal growth factor receptor (EGFR) modulates invadopodia activity through phosphorylation of the actin regulatory protein cortactin. In MDA-MB-231 breast cancer cells, Abl and Arg function downstream of Src to phosphorylate cortactin, promoting invadopodia ECM degradation activity and thus assigning a pro-invasive role for Ableson kinases. We report that Abl kinases have an opposite, negative regulatory role in HNSCC where they suppress invadopodia and tumor invasion. Impairment of Abl expression or Abl kinase activity with imatinib mesylate enhanced HNSCC matrix degradation and 3D collagen invasion, functions that were impaired in MDA-MB-231. HNSCC lines with elevated EGFR and Src activation did not contain increased Abl or Arg kinase activity, suggesting that Src could bypass Abl/Arg to phosphorylate cortactin and promote invadopodia ECM degradation. Src-transformed Abl−/−/Arg−/− fibroblasts produced ECM degrading invadopodia containing pY421 cortactin, indicating that Abl/Arg are dispensable for invadopodia function in this system. Imatinib-treated HNSCC cells had increased EGFR, Erk1/2 and Src activation, enhancing cortactin pY421 and pS405/418 required for invadopodia function. Imatinib stimulated shedding of the EGFR ligand heparin-binding EGF-like growth factor (HB-EGF) from HNSCC cells, where soluble HB-EGF enhanced invadopodia ECM degradation in HNSCC but not in MDA-MB-231. HNSCC cells treated with inhibitors of the EGFR-invadopodia pathway indicated that EGFR and Src are required for invadopodia function. Collectively, our results indicate that Abl kinases negatively regulate HNSCC invasive processes through suppression of an HB-EGF autocrine loop responsible for activating a EGFR-Src-cortactin cascade, in contrast to the invasion promoting functions of Abl kinases in breast and other cancer types. Our results provide mechanistic support for recent failed HNSCC clinical trials utilizing imatinib.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Pryor DI, Solomon B, Porceddu SV . The emerging era of personalized therapy in squamous cell carcinoma of the head and neck. Asia Pac J Clin Oncol 2011; 7: 236–251.

    PubMed  Google Scholar 

  2. Leemans CR, Braakhuis BJ, Brakenhoff RH . The molecular biology of head and neck cancer. Nat Rev Cancer 2011; 11: 9–22.

    CAS  PubMed  Google Scholar 

  3. Kalyankrishna S, Grandis JR . Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol 2006; 24: 2666–2672.

    CAS  PubMed  Google Scholar 

  4. Hama T, Yuza Y, Saito Y, O-uchi J, Kondo S, Okabe M et al. Prognostic significance of epidermal growth factor receptor phosphorylation and mutation in head and neck squamous cell carcinoma. Oncologist 2009; 14: 900–908.

    CAS  PubMed  Google Scholar 

  5. Hama T, Yuza Y, Suda T, Saito Y, Norizoe C, Kato T et al. Functional mutation analysis of EGFR family genes and corresponding lymph node metastases in head and neck squamous cell carcinoma. Clin Exp Metastasis 2012; 29: 19–25.

    CAS  PubMed  Google Scholar 

  6. Uribe P, Gonzalez S . Epidermal growth factor receptor (EGFR) and squamous cell carcinoma of the skin: molecular bases for EGFR-targeted therapy. Pathology - Research and Practice 2011 6/15 207: 337–342.

    CAS  Google Scholar 

  7. Fung C, Grandis JR . Emerging drugs to treat squamous cell carcinomas of the head and neck. Expert Opin Emerg Drugs 2010; 15: 355–373.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Neiva KG, Zhang Z, Miyazawa M, Warner KA, Karl E, Nor JE . Cross talk initiated by endothelial cells enhances migration and inhibits anoikis of squamous cell carcinoma cells through STAT3/Akt/ERK signaling. Neoplasia 2009; 11: 583–593.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Koppikar P, Choi SH, Egloff AM, Cai Q, Suzuki S, Freilino M et al. Combined inhibition of c-Src and epidermal growth factor receptor abrogates growth and invasion of head and neck squamous cell carcinoma. Clin Cancer Res 2008; 14: 4284–4291.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang JL, Qu XJ, Russell PJ, Goldstein D . Interferon-alpha promotes the anti-proliferative effect of Erlotinib (OSI-774) on human colon cancer cell lines. Cancer Lett 2005; 225: 61–74.

    CAS  PubMed  Google Scholar 

  11. Huang YT, Hwang JJ, Lee LT, Liebow C, Lee PP, Ke FC et al. Inhibitory effects of a luteinizing hormone-releasing hormone agonist on basal and epidermal growth factor-induced cell proliferation and metastasis-associated properties in human epidermoid carcinoma A431 cells. Int J Cancer 2002; 99: 505–513.

    CAS  PubMed  Google Scholar 

  12. Guarino M . Src signaling in cancer invasion. J Cell Physiol 2010; 223: 14–26.

    CAS  PubMed  Google Scholar 

  13. Kim LC, Song L, Haura EB . Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol 2009; 6: 587–595.

    PubMed  Google Scholar 

  14. Summy JM, Gallick GE . Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev 2003; 22: 337–358.

    CAS  PubMed  Google Scholar 

  15. Shor AC, Keschman EA, Lee FY, Muro-Cacho C, Letson GD, Trent JC et al. Dasatinib inhibits migration and invasion in diverse human sarcoma cell lines and induces apoptosis in bone sarcoma cells dependent on SRC kinase for survival. Cancer Res 2007; 67: 2800–2808.

    CAS  PubMed  Google Scholar 

  16. Chen YS, Wu MJ, Huang CY, Lin SC, Chuang TH, Yu CC et al. CD133/Src axis mediates tumor initiating property and epithelial-mesenchymal transition of head and neck cancer. PLoS One 2011; 6: e28053.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Johnson FM, Saigal B, Talpaz M, Donato NJ . Dasatinib (BMS-354825) tyrosine kinase inhibitor suppresses invasion and induces cell cycle arrest and apoptosis of head and neck squamous cell carcinoma and non-small cell lung cancer cells. Clin Cancer Res 2005; 11 (19 Pt 1): 6924–6932.

    CAS  PubMed  Google Scholar 

  18. Sen B, Saigal B, Parikh N, Gallick G, Johnson FM . Sustained Src inhibition results in signal transducer and activator of transcription 3 (STAT3) activation and cancer cell survival via altered Janus-activated kinase-STAT3 binding. Cancer Res 2009; 69: 1958–1965.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang S, Yu D . Targeting Src family kinases in anti-cancer therapies: turning promise into triumph. Trends Pharmacol Sci 2012, 3 33: 122–128.

    PubMed  Google Scholar 

  20. Mayer EL, Krop IE . Advances in targeting SRC in the treatment of breast cancer and other solid malignancies. Clin Cancer Res 2010; 16: 3526–3532.

    CAS  PubMed  Google Scholar 

  21. Wheeler DL, Iida M, Kruser TJ, Nechrebecki MM, Dunn EF, Armstrong EA et al. Epidermal growth factor receptor cooperates with Src family kinases in acquired resistance to cetuximab. Cancer Biol Ther 2009; 8: 696–703.

    CAS  PubMed  Google Scholar 

  22. Haura EB, Tanvetyanon T, Chiappori A, Williams C, Simon G, Antonia S et al. Phase I/II study of the Src inhibitor dasatinib in combination with erlotinib in advanced non-small-cell lung cancer. J Clin Oncol 2010; 28: 1387–1394.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Araujo JC, Mathew P, Armstrong AJ, Braud EL, Posadas E, Lonberg M et al. Dasatinib combined with docetaxel for castration-resistant prostate cancer: results from a phase 1-2 study. Cancer 2012; 118: 63–71.

    CAS  PubMed  Google Scholar 

  24. Murphy DA, Courtneidge SA . The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol 2011; 12: 413–426.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Linder S, Wiesner C, Himmel M . Degrading devices: invadosomes in proteolytic cell invasion. Annu Rev Cell Dev Biol 2011; 27: 185–211.

    CAS  PubMed  Google Scholar 

  26. Poincloux R, Lizarraga F, Chavrier P . Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia. J Cell Sci 2009; 122 (Pt 17): 3015–3024.

    CAS  PubMed  Google Scholar 

  27. Artym VV, Zhang Y, Seillier-Moiseiwitsch F, Yamada KM, Mueller SC . Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Res 2006; 66: 3034–3043.

    CAS  PubMed  Google Scholar 

  28. Oser M, Yamaguchi H, Mader CC, Bravo-Cordero JJ, Arias M, Chen X et al. Cortactin regulates cofilin and N-WASp activities to control the stages of invadopodium assembly and maturation. J Cell Biol 2009; 186: 571–587.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Destaing O, Block MR, Planus E, Albiges-Rizo C . Invadosome regulation by adhesion signaling. Curr Opin Cell Biol 2011; 23: 597–606.

    CAS  PubMed  Google Scholar 

  30. Ren G, Crampton MS, Yap AS . Cortactin: Coordinating adhesion and the actin cytoskeleton at cellular protrusions. Cell Motil Cytoskeleton 2009; 66: 865–873.

    CAS  PubMed  Google Scholar 

  31. Buccione R, Caldieri G, Ayala I . Invadopodia: specialized tumor cell structures for the focal degradation of the extracellular matrix. Cancer Metastasis Rev 2009; 28: 137–149.

    PubMed  Google Scholar 

  32. Kirkbride KC, Sung BH, Sinha S, Weaver AM . Cortactin: a multifunctional regulator of cellular invasiveness. Cell Adh Migr 2011, Mar-Apr 5: 187–198.

    PubMed  PubMed Central  Google Scholar 

  33. Weaver AM, Karginov AV, Kinley AW, Weed SA, Li Y, Parsons JT et al. Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr Biol 2001; 11: 370–374.

    CAS  PubMed  Google Scholar 

  34. Ammer AG, Weed SA . Cortactin branches out: roles in regulating protrusive actin dynamics. Cell Motil Cytoskeleton 2008; 65: 687–707.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Martinez-Quiles N, Ho HY, Kirschner MW, Ramesh N, Geha RS . Erk/Src phosphorylation of cortactin acts as a switch on-switch off mechanism that controls its ability to activate N-WASP. Mol Cell Biol 2004; 24: 5269–5280.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kelley LC, Ammer AG, Hayes KE, Martin KH, Machida K, Jia L et al. Oncogenic Src requires a wild-type counterpart to regulate invadopodia maturation. J Cell Sci 2010; 123 (Pt 22): 3923–3932.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Oser M, Mader CC, Gil-Henn H, Magalhaes M, Bravo-Cordero JJ, Koleske AJ et al. Specific tyrosine phosphorylation sites on cortactin regulate Nck1-dependent actin polymerization in invadopodia. J Cell Sci 2010; 123 (Pt 21): 3662–3673.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tehrani S, Tomasevic N, Weed S, Sakowicz R, Cooper JA . Src phosphorylation of cortactin enhances actin assembly. Proc Natl Acad Sci USA 2007; 104: 11933–11938.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yamaguchi H, Lorenz M, Kempiak S, Sarmiento C, Coniglio S, Symons M et al. Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol 2005; 168: 441–452.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ayala I, Baldassarre M, Giacchetti G, Caldieri G, Tete S, Luini A et al. Multiple regulatory inputs converge on cortactin to control invadopodia biogenesis and extracellular matrix degradation. J Cell Sci 2008; 121 (Pt 3): 369–378.

    CAS  PubMed  Google Scholar 

  41. Webb BA, Jia L, Eves R, Mak AS . Dissecting the functional domain requirements of cortactin in invadopodia formation. Eur J Cell Biol 2007; 86: 189–206.

    CAS  PubMed  Google Scholar 

  42. Colicelli J . ABL tyrosine kinases: evolution of function, regulation, and specificity. Sci Signal 2010; 3: re6.

    PubMed  PubMed Central  Google Scholar 

  43. Bradley WD, Koleske AJ . Regulation of cell migration and morphogenesis by Abl-family kinases: emerging mechanisms and physiological contexts. J Cell Sci 2009; 122 (Pt 19): 3441–3454.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Plattner R, Pendergast AM . Activation and signaling of the Abl tyrosine kinase: bidirectional link with phosphoinositide signaling. Cell Cycle 2003, Jul-Aug 2: 273–274.

    CAS  PubMed  Google Scholar 

  45. Ernst T, Hochhaus A . Chronic myeloid leukemia: clinical impact of BCR-ABL1 mutations and other lesions associated with disease progression. Semin Oncol 2012; 39: 58–66.

    CAS  PubMed  Google Scholar 

  46. Wang Y, Gu M, Mi Y, Qiu L, Bian S, Wang J . Clinical characteristics and outcomes of mixed phenotype acute leukemia with Philadelphia chromosome positive and/or bcr-abl positive in adult. Int J Hematol 2011; 94: 552–555.

    CAS  PubMed  Google Scholar 

  47. Srinivasan D, Plattner R . Activation of Abl tyrosine kinases promotes invasion of aggressive breast cancer cells. Cancer Res 2006; 66: 5648–5655.

    CAS  PubMed  Google Scholar 

  48. Srinivasan D, Sims JT, Plattner R . Aggressive breast cancer cells are dependent on activated Abl kinases for proliferation, anchorage-independent growth and survival. Oncogene 2008; 27: 1095–1105.

    CAS  PubMed  Google Scholar 

  49. Lin J, Sun T, Ji L, Deng W, Roth J, Minna J et al. Oncogenic activation of c-Abl in non-small cell lung cancer cells lacking FUS1 expression: inhibition of c-Abl by the tumor suppressor gene product Fus1. Oncogene 2007; 26: 6989–6996.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Furlan A, Stagni V, Hussain A, Richelme S, Conti F, Prodosmo A et al. Abl interconnects oncogenic Met and p53 core pathways in cancer cells. Cell Death Differ 2011; 18: 1608–1616.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mader CC, Oser M, Magalhaes MA, Bravo-Cordero JJ, Condeelis J, Koleske AJ et al. An EGFR-Src-Arg-cortactin pathway mediates functional maturation of invadopodia and breast cancer cell invasion. Cancer Res 2011; 71: 1730–1741.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lapetina S, Mader CC, Machida K, Mayer BJ, Koleske AJ . Arg interacts with cortactin to promote adhesion-dependent cell edge protrusion. J Cell Biol 2009; 185: 503–519.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ganguly SS, Fiore LS, Sims JT, Friend JW, Srinivasan D, Thacker MA et al. c-Abl and Arg are activated in human primary melanomas, promote melanoma cell invasion via distinct pathways, and drive metastatic progression. Oncogene 2011; Sep: 5.

    Google Scholar 

  54. Plattner R, Kadlec L, DeMali KA, Kazlauskas A, Pendergast AM . c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF. Genes Dev 1999; 13: 2400–2411.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Smith-Pearson PS, Greuber EK, Yogalingam G, Pendergast AM . Abl kinases are required for invadopodia formation and chemokine-induced invasion. J Biol Chem 2010; 285: 40201–40211.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sibony-Benyamini H, Gil-Henn H . Invadopodia: the leading force. Eur J Cell Biol 2012; 91: 896–901.

    CAS  PubMed  Google Scholar 

  57. Tsao AS, Liu S, Fujimoto J, Wistuba II, Lee JJ, Marom EM et al. Phase II trials of imatinib mesylate and docetaxel in patients with metastatic non-small cell lung cancer and head and neck squamous cell carcinoma. J Thorac Oncol 2011; 6: 2104–2111.

    PubMed  Google Scholar 

  58. Clark ES, Whigham AS, Yarbrough WG, Weaver AM . Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia. Cancer Res 2007; 67: 4227–4235.

    CAS  PubMed  Google Scholar 

  59. Blake RA, Broome MA, Liu X, Wu J, Gishizky M, Sun L et al. SU6656, a selective src family kinase inhibitor, used to probe growth factor signaling. Mol Cell Biol 2000; 20: 9018–9027.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Johnson FM, Saigal B, Donato NJ . Induction of heparin-binding EGF-like growth factor and activation of EGF receptor in imatinib mesylate-treated squamous carcinoma cells. J Cell Physiol 2005; 205: 218–227.

    CAS  PubMed  Google Scholar 

  61. Hennequin LF, Allen J, Breed J, Curwen J, Fennell M, Green TP et al. N-(5-chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5- (tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-Src/Abl kinase inhibitor. J Med Chem 2006; 49: 6465–6488.

    CAS  PubMed  Google Scholar 

  62. Summy JM, Gallick GE . Treatment for advanced tumors: SRC reclaims center stage. Clin Cancer Res 2006; 12: 1398–1401.

    CAS  PubMed  Google Scholar 

  63. Rothschild BL, Shim AH, Ammer AG, Kelley LC, Irby KB, Head JA et al. Cortactin overexpression regulates actin-related protein 2/3 complex activity, motility, and invasion in carcinomas with chromosome 11q13 amplification. Cancer Res 2006; 66: 8017–8025.

    CAS  PubMed  Google Scholar 

  64. Noren NK, Foos G, Hauser CA, Pasquale EB . The EphB4 receptor suppresses breast cancer cell tumorigenicity through an Abl-Crk pathway. Nat Cell Biol 2006; 8: 815–825.

    CAS  PubMed  Google Scholar 

  65. Allington TM, Galliher-Beckley AJ, Schiemann WP . Activated Abl kinase inhibits oncogenic transforming growth factor-beta signaling and tumorigenesis in mammary tumors. FASEB J 2009; 23: 4231–4243.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Frasca F, Vigneri P, Vella V, Vigneri R, Wang JY . Tyrosine kinase inhibitor STI571 enhances thyroid cancer cell motile response to hepatocyte growth factor. Oncogene 2001; 20: 3845–3856.

    CAS  PubMed  Google Scholar 

  67. Huang C, Liu J, Haudenschild CC, Zhan X . The role of tyrosine phosphorylation of cortactin in the locomotion of endothelial cells. J Biol Chem 1998; 273: 25770–25776.

    CAS  PubMed  Google Scholar 

  68. Boyle SN, Michaud GA, Schweitzer B, Predki PF, Koleske AJ . A critical role for cortactin phosphorylation by Abl-family kinases in PDGF-induced dorsal-wave formation. Curr Biol 2007; 17: 445–451.

    CAS  PubMed  Google Scholar 

  69. Plattner R, Koleske AJ, Kazlauskas A, Pendergast AM . Bidirectional signaling links the Abelson kinases to the platelet-derived growth factor receptor. Mol Cell Biol 2004; 24: 2573–2583.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Head JA, Jiang D, Li M, Zorn LJ, Schaefer EM, Parsons JT et al. Cortactin tyrosine phosphorylation requires Rac1 activity and association with the cortical actin cytoskeleton. Mol Biol Cell 2003; 14: 3216–3229.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kelley LC, Hayes KE, Ammer AG, Martin KH, Weed SA . Cortactin phosphorylated by ERK1/2 localizes to sites of dynamic actin regulation and is required for carcinoma lamellipodia persistence. PLoS One 2010; 5: e13847.

    PubMed  PubMed Central  Google Scholar 

  72. O-charoenrat P, Modjtahedi H, Rhys-Evans P, Court WJ, Box GM, Eccles SA . Epidermal growth factor-like ligands differentially up-regulate matrix metalloproteinase 9 in head and neck squamous carcinoma cells. Cancer Res 2000; 60: 1121–1128.

    CAS  PubMed  Google Scholar 

  73. Ohnishi Y, Inoue H, Furukawa M, Kakudo K, Nozaki M . Heparin-binding epidermal growth factor-like growth factor is a potent regulator of invasion activity in oral squamous cell carcinoma. Oncol Rep 2012; 27: 954–958.

    CAS  PubMed  Google Scholar 

  74. Ammer AG, Kelley LC, Hayes KE, Evans JV, Lopez-Skinner LA, Martin KH et al. Saracatinib impairs head and neck squamous cell carcinoma invasion by disrupting invadopodia function. J Cancer Sci Ther 2009; 1: 52–61.

    CAS  PubMed  Google Scholar 

  75. Liberatore RA, Goff SP, Nunes I . NF-kappaB activity is constitutively elevated in c-Abl null fibroblasts. Proc Natl Acad Sci USA 2009; 106: 17823–17828.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang F, Liu R, Lee SW, Sloss CM, Couget J, Cusack JC et al. like growth factor is an early response gene to chemotherapy and contributes to chemotherapy resistance. Oncogene 2007; 26: 2006–2016.

    CAS  PubMed  Google Scholar 

  77. Hatakeyama H, Cheng H, Wirth P, Counsell A, Marcrom SR, Wood CB et al. Regulation of heparin-binding EGF-like growth factor by miR-212 and acquired cetuximab-resistance in head and neck squamous cell carcinoma. PLoS One 2010; 5: e12702.

    PubMed  PubMed Central  Google Scholar 

  78. Yanagawa T, Harada H, Iwasa S, Tabuchi K, Omura K, Suzuki H et al. c-Abl expression in oral squamous cell carcinomas. Oral Oncol 2000; 36: 89–94.

    CAS  PubMed  Google Scholar 

  79. Fury MG, Baxi S, Shen R, Kelly KW, Lipson BL, Carlson D et al. Phase II study of saracatinib (AZD0530) for patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC). Anticancer Res 2011; 31: 249–253.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Brooks HD, Glisson BS, Bekele BN, Johnson FM, Ginsberg LE, El-Naggar A et al. Phase 2 study of dasatinib in the treatment of head and neck squamous cell carcinoma. Cancer 2011; 117: 2112–2119.

    CAS  PubMed  Google Scholar 

  81. Montero JC, Seoane S, Ocana A, Pandiella A . Inhibition of SRC family kinases and receptor tyrosine kinases by dasatinib: possible combinations in solid tumors. Clin Cancer Res 2011; 17: 5546–5552.

    CAS  PubMed  Google Scholar 

  82. Lara PN, Longmate J, Evans CP, Quinn DI, Twardowski P, Chatta G et al. A phase II trial of the Src-kinase inhibitor AZD0530 in patients with advanced castration-resistant prostate cancer: a California Cancer Consortium study. Anticancer Drugs 2009; 20: 179–184.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Gucalp A, Sparano JA, Caravelli J, Santamauro J, Patil S, Abbruzzi A et al. Phase II trial of saracatinib (AZD0530), an oral SRC-inhibitor for the treatment of patients with hormone receptor-negative metastatic breast cancer. Clin Breast Cancer 2011; 11: 306–311.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Cai L, Makhov AM, Schafer DA, Bear JE . Coronin 1B antagonizes cortactin and remodels Arp2/3-containing actin branches in lamellipodia. Cell 2008; 134: 828–842.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Poppe M, Feller SM, Romer G, Wessler S . Phosphorylation of Helicobacter pylori CagA by c-Abl leads to cell motility. Oncogene 2007; 26: 3462–3472.

    CAS  PubMed  Google Scholar 

  86. Antoku S, Saksela K, Rivera GM, Mayer BJ . A crucial role in cell spreading for the interaction of Abl PxxP motifs with Crk and Nck adaptors. J Cell Sci 2008; 121 (Pt 18): 3071–3082.

    CAS  PubMed  Google Scholar 

  87. Martin KH, Hayes KE, Walk EL, Ammer AG, Markwell SM, Weed SA . Quantitative measurement of invadopodia-mediated extracellular matrix proteolysis in single and multicellular contexts. J Vis Exp 2012; 66: e4119.

    Google Scholar 

Download references

Acknowledgements

We thank Bruce Mayer (University of Connecticut) for Abl constructs, Anthony Koleske (Yale University) for Abl−/−/Arg−/− fibroblasts, Silja Wessler (Paul-Ehrlich Institute) for the Abl shRNA construct, Elena Pugacheva (West Virginia University) for MDA-MB-231LN cells, Jim Bear (University of North Carolina) for pLL5.0 and advice on spheroid assay development. We thank Mark Auble and Barbara Frederick for technical assistance. Saracatinib and gefitinib were provided by AstraZeneca. This study was supported by NIH Grants R01 DE014578, P20 RR16440 (to SAW) and the West Virginia University Mary Babb Randolph Cancer Center. The West Virginia University Microscopy Imaging Facility (supported by the Mary Babb Randolph Cancer, NIH Grants P20 RR16440 and P30 RR032138/GM103488) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S A Weed.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayes, K., Walk, E., Ammer, A. et al. Ableson kinases negatively regulate invadopodia function and invasion in head and neck squamous cell carcinoma by inhibiting an HB-EGF autocrine loop. Oncogene 32, 4766–4777 (2013). https://doi.org/10.1038/onc.2012.513

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.513

Keywords

This article is cited by

Search

Quick links