Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The role of SRY-related HMG box transcription factor 4 (SOX4) in tumorigenesis and metastasis: friend or foe?

Abstract

Development and progression of cancer are mediated by alterations in transcriptional networks, resulting in a disturbed balance between the activity of oncogenes and tumor suppressor genes. Transcription factors have the capacity to regulate global transcriptional profiles, and are consequently often found to be deregulated in their expression and function during tumorigenesis. Sex-determining region Y-related high-mobility-group box transcription factor 4 (SOX4) is a member of the group C subfamily of the SOX transcription factors and has a critical role during embryogenesis, where its expression is widespread and controls the development of numerous tissues. SOX4 expression is elevated in a wide variety of tumors, including leukemia, colorectal cancer, lung cancer and breast cancer, suggesting a fundamental role in the development of these malignancies. In many cancers, deregulated expression of this developmental factor has been correlated with increased cancer cell proliferation, cell survival, inhibition of apoptosis and tumor progression through the induction of an epithelial-to-mesenchymal transition and metastasis. However, in a limited subset of tumors, SOX4 has also been reported to act as a tumor suppressor. These opposing roles suggest that the outcome of SOX4 activation depends on the cellular context and the tumor origin. Indeed, SOX4 expression, transcriptional activity and target gene specificity can be controlled by signaling pathways, including the transforming growth factor-β and the WNT pathway, as well as at the post-translational level through regulation of protein stability and interaction with specific cofactors, such as TCF, syntenin-1 and p53. Here, we provide an overview of our current knowledge concerning the role of SOX4 in tumor development and progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Bowles J, Schepers G, Koopman P . Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol 2000; 227: 239–255.

    CAS  PubMed  Google Scholar 

  2. Harley V, Lefebvre V . Twenty Sox twenty years. Int J Biochem Cell Biol 2010; 42: 376–377.

    CAS  PubMed  Google Scholar 

  3. Dong C, Wilhelm D, Koopman P . Sox genes and cancer. Cytogenet Genome Res 2004; 105: 442–447.

    CAS  PubMed  Google Scholar 

  4. van de Wetering M, Oosterwegel M, van Norren K, H Clevers . Sox-4, an Sry-like HMG box protein, is a transcriptional activator in lymphocytes. EMBO J 1993; 12: 3847–3854.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Schilham MW, Oosterwegel MA, Moerer P, Ya J, de Boer PA, van de Wetering M et al. Defects in cardiac outflow tract formation and pro-B-lymphocyte expansion in mice lacking Sox-4. Nature 1996; 380: 711–714.

    CAS  PubMed  Google Scholar 

  6. Schilham MW, Moerer P, Cumano A, Clevers HC . Sox-4 facilitates thymocyte differentiation. Eur J Immunol 1997; 27: 1292–1295.

    CAS  PubMed  Google Scholar 

  7. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D et al. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci USA 2004; 101: 9309–9314.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dy P, Penzo-Mendez A, Wang H, Pedraza CE, Macklin WB, Lefebvre V . The three SoxC proteins—Sox4, Sox11 and Sox12—exhibit overlapping expression patterns and molecular properties. Nucleic Acids Res 2008; 36: 3101–3117.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Weiss MA . Floppy SOX: mutual induced fit in hmg (high-mobility group) box-DNA recognition. Mol Endocrinol 2001; 15: 353–362.

    CAS  PubMed  Google Scholar 

  10. van Beest M, Dooijes D, van De Wetering M, Kjaerulff S, Bonvin A, Nielsen O et al. Sequence-specific high mobility group box factors recognize 10-12-base pair minor groove motifs. J Biol Chem 2000; 275: 27266–27273.

    CAS  PubMed  Google Scholar 

  11. van de Wetering M, Clevers H . Sequence-specific interaction of the HMG box proteins TCF-1 and SRY occurs within the minor groove of a Watson–Crick double helix. EMBO J 1992; 11: 3039–3044.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. van Houte LP, Chuprina VP, van der Wetering M, Boelens R, Kaptein R, Clevers H . Solution structure of the sequence-specific HMG box of the lymphocyte transcriptional activator Sox-4. J Biol Chem 1995; 270: 30516–30524.

    CAS  PubMed  Google Scholar 

  13. Giese K, Kingsley C, Kirshner JR, Grosschedl R . Assembly and function of a TCR alpha enhancer complex is dependent on LEF-1-induced DNA bending and multiple protein–protein interactions. Genes Dev 1995; 9: 995–1008.

    CAS  PubMed  Google Scholar 

  14. Travis A, Amsterdam A, Belanger C, Grosschedl R . LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor alpha enhancer function [corrected]. Genes Dev 1991; 5: 880–894.

    CAS  PubMed  Google Scholar 

  15. Pontiggia A, Rimini R, Harley VR, Goodfellow PN, Lovell-Badge R, Bianchi ME . Sex-reversing mutations affect the architecture of SRY-DNA complexes. EMBO J 1994; 13: 6115–6124.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jauch R, Ng CK, Narasimhan K, Kolatkar PR . Crystal structure of the Sox4 HMG/DNA complex suggests a mechanism for the positional interdependence in DNA recognition. Biochem J 2012; 443: 39–47.

    CAS  PubMed  Google Scholar 

  17. Wotton D, Lake RA, Farr CJ, Owen MJ . The high mobility group transcription factor, SOX4, transactivates the human CD2 enhancer. J Biol Chem 1995; 270: 7515–7522.

    CAS  PubMed  Google Scholar 

  18. Bergsland M, Werme M, Malewicz M, Perlmann T, Muhr J . The establishment of neuronal properties is controlled by Sox4 and Sox11. Genes Dev 2006; 20: 3475–3486.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tanaka S, Kamachi Y, Tanouchi A, Hamada H, Jing N, Kondoh H . Interplay of SOX and POU factors in regulation of the Nestin gene in neural primordial cells. Mol Cell Biol 2004; 24: 8834–8846.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Nowling TK, Johnson LR, Wiebe MS, Rizzino A . Identification of the transactivation domain of the transcription factor Sox-2 and an associated co-activator. J Biol Chem 2000; 275: 3810–3818.

    CAS  PubMed  Google Scholar 

  21. Beekman JM, Vervoort SJ, Dekkers F, van Vessem ME, Vendelbosch S, Brugulat-Panes A et al. Syntenin-mediated regulation of Sox4 proteasomal degradation modulates transcriptional output. Oncogene 2011.

  22. Geijsen N, Uings IJ, Pals C, Armstrong J, McKinnon M, Raaijmakers JA et al. Cytokine-specific transcriptional regulation through an IL-5Ralpha interacting protein. Science 2001; 293: 1136–1138.

    CAS  PubMed  Google Scholar 

  23. Hur EH, Hur W, Choi JY, Kim IK, Kim HY, Yoon SK et al. Functional identification of the pro-apoptotic effector domain in human Sox4. Biochem Biophys Res Commun 2004; 325: 59–67.

    CAS  PubMed  Google Scholar 

  24. Maschhoff KL, Anziano PQ, Ward P, Baldwin HS . Conservation of Sox4 gene structure and expression during chicken embryogenesis. Gene 2003; 320: 23–30.

    CAS  PubMed  Google Scholar 

  25. Bhattaram P, Penzo-Mendez A, Sock E, Colmenares C, Kaneko KJ, Vassilev A et al. Organogenesis relies on SoxC transcription factors for the survival of neural and mesenchymal progenitors. Nat Commun 2010; 1: 9.

    PubMed  Google Scholar 

  26. Goldsworthy M, Hugill A, Freeman H, Horner E, Shimomura K, Bogani D et al. Role of the transcription factor sox4 in insulin secretion and impaired glucose tolerance. Diabetes 2008; 57: 2234–2244.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ragvin A, Moro E, Fredman D, Navratilova P, Drivenes O, Engstrom PG et al. Long-range gene regulation links genomic type 2 diabetes and obesity risk regions to HHEX, SOX4, and IRX3. Proc Natl Acad Sci USA 2010; 107: 775–780.

    CAS  PubMed  Google Scholar 

  28. Wilson ME, Yang KY, Kalousova A, Lau J, Kosaka Y, Lynn FC et al. The HMG box transcription factor Sox4 contributes to the development of the endocrine pancreas. Diabetes 2005; 54: 3402–3409.

    CAS  PubMed  Google Scholar 

  29. Mavropoulos A, Devos N, Biemar F, Zecchin E, Argenton F, Edlund H et al. Sox4b is a key player of pancreatic alpha cell differentiation in zebrafish. Dev Biol 2005; 285: 211–223.

    CAS  PubMed  Google Scholar 

  30. Kuwahara M, Yamashita M, Shinoda K, Tofukuji S, Onodera A, Shinnakasu R et al. The transcription factor Sox4 is a downstream target of signaling by the cytokine TGF-beta and suppresses T(H)2 differentiation. Nat Immunol 2012; 30: 778–786.

    Google Scholar 

  31. Beekman JM, Verhagen LP, Geijsen N, Coffer PJ . Regulation of myelopoiesis through syntenin-mediated modulation of IL-5 receptor output. Blood 2009; 114: 3917–3927.

    CAS  PubMed  Google Scholar 

  32. Reppe S, Rian E, Jemtland R, Olstad OK, Gautvik VT, Gautvik KM . Sox-4 messenger RNA is expressed in the embryonic growth plate and regulated via the parathyroid hormone/parathyroid hormone-related protein receptor in osteoblast-like cells. J Bone Miner Res 2000; 15: 2402–2412.

    CAS  PubMed  Google Scholar 

  33. Nissen-Meyer LS, Jemtland R, Gautvik VT, Pedersen ME, Paro R, Fortunati D et al. Osteopenia, decreased bone formation and impaired osteoblast development in Sox4 heterozygous mice. J Cell Sci 2007; 120: 2785–2795.

    CAS  PubMed  Google Scholar 

  34. Duncan EL, Danoy P, Kemp JP, Leo PJ, McCloskey E, Nicholson GC et al. Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLoS Genet 2011; 7: e1001372.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jemtland R, Holden M, Reppe S, Olstad OK, Reinholt FP, Gautvik VT et al. Molecular disease map of bone characterizing the postmenopausal osteoporosis phenotype. J Bone Miner Res 2011; 26: 1793–1801.

    CAS  PubMed  Google Scholar 

  36. Lioubinski O, Muller M, Wegner M, Sander M . Expression of Sox transcription factors in the developing mouse pancreas. Dev Dyn 2003; 227: 402–408.

    CAS  PubMed  Google Scholar 

  37. Van der Flier LG, Sabates-Bellver J, Oving I, Haegebarth A, De Palo M, Anti M et al. The intestinal Wnt/TCF signature. Gastroenterology 2007; 132: 628–632.

    CAS  PubMed  Google Scholar 

  38. Deneault E, Cellot S, Faubert A, Laverdure JP, Frechette M, Chagraoui J et al. A functional screen to identify novel effectors of hematopoietic stem cell activity. Cell 2009; 137: 369–379.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hunt SM, Clarke CL . Expression and hormonal regulation of the Sox4 gene in mouse female reproductive tissues. Biol Reprod 1999; 61: 476–481.

    CAS  PubMed  Google Scholar 

  40. Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 2010; 140: 62–73.

    CAS  PubMed  Google Scholar 

  41. Li Z, Kustikova OS, Kamino K, Neumann T, Rhein M, Grassman E et al. Insertional mutagenesis by replication-deficient retroviral vectors encoding the large T oncogene. Ann NY Acad Sci 2007; 1106: 95–113.

    CAS  PubMed  Google Scholar 

  42. Suzuki T, Shen H, Akagi K, Morse HC, Malley JD, Naiman DQ et al. New genes involved in cancer identified by retroviral tagging. Nat Genet 2002; 32: 166–174.

    CAS  PubMed  Google Scholar 

  43. Shin MS, Fredrickson TN, Hartley JW, Suzuki T, Akagi K, Morse HC . High-throughput retroviral tagging for identification of genes involved in initiation and progression of mouse splenic marginal zone lymphomas. Cancer Res 2004; 64: 4419–4427.

    Article  CAS  PubMed  Google Scholar 

  44. Boyd KE, Xiao YY, Fan K, Poholek A, Copeland NG, Jenkins NA et al. Sox4 cooperates with Evi1 in AKXD-23 myeloid tumors via transactivation of proviral LTR. Blood 2006; 107: 733–741.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Du Y, Spence SE, Jenkins NA, Copeland NG . Cooperating cancer-gene identification through oncogenic-retrovirus-induced insertional mutagenesis. Blood 2005; 106: 2498–2505.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bies J, Sramko M, Fares J, Rosu-Myles M, Zhang S, Koller R et al. Myeloid-specific inactivation of p15Ink4b results in monocytosis and predisposition to myeloid leukemia. Blood 2010; 116: 979–987.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Liber D, Domaschenz R, Holmqvist PH, Mazzarella L, Georgiou A, Leleu M et al. Epigenetic priming of a pre-B cell-specific enhancer through binding of Sox2 and Foxd3 at the ESC stage. Cell Stem Cell 2010; 7: 114–126.

    CAS  PubMed  Google Scholar 

  48. Lund PK, Ovstebo R, Moller AS, Olstad OK, Landsverk KS, Hellum M et al. Using global gene expression patterns to characterize Annexin V positive and negative human monocytes in culture. Scand J Clin Lab Invest 2009; 69: 251–264.

    CAS  PubMed  Google Scholar 

  49. Potthoff MJ, Olson EN . MEF2: a central regulator of diverse developmental programs. Development 2007; 134: 4131–4140.

    CAS  PubMed  Google Scholar 

  50. Aue G, Du Y, Cleveland SM, Smith SB, Dave UP, Liu D et al. Sox4 cooperates with PU.1 haploinsufficiency in murine myeloid leukemia. Blood 2011; 118: 4674–4681.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sandoval S, Kraus C, Cho EC, Cho M, Bies J, Manara E et al. Sox4 cooperates with CREB in myeloid transformation. Blood 2012; 120: 155–165.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tonks A, Pearn L, Musson M, Gilkes A, Mills KI, Burnett AK et al. Transcriptional dysregulation mediated by RUNX1-RUNX1T1 in normal human progenitor cells and in acute myeloid leukaemia. Leukemia 2007; 21: 2495–2505.

    CAS  PubMed  Google Scholar 

  53. Fortier JM, Payton JE, Cahan P, Ley TJ, Walter MJ, Graubert TA . POU4F1 is associated with t(8;21) acute myeloid leukemia and contributes directly to its unique transcriptional signature. Leukemia 2010; 24: 950–957.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kvinlaug BT, Chan WI, Bullinger L, Ramaswami M, Sears C, Foster D et al. Common and overlapping oncogenic pathways contribute to the evolution of acute myeloid leukemias. Cancer Res 2011; 71: 4117–4129.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Testa U . Leukemia stem cells. Ann Hematol 2011; 90: 245–271.

    CAS  PubMed  Google Scholar 

  56. Novershtern N, Subramanian A, Lawton LN, Mak RH, Haining WN, McConkey ME et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 2011; 144: 296–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Iqbal MS, Otsuyama K, Shamsasenjan K, Asaoku H, Kawano MM . CD56 expression in human myeloma cells derived from the neurogenic gene expression: possible role of the SRY-HMG box gene SOX4. Int J Hematol 2010; 91: 267–275.

    CAS  PubMed  Google Scholar 

  58. Frierson HF, El-Naggar AK, Welsh JB, Sapinoso LM, Su AI, Cheng J et al. Large scale molecular analysis identifies genes with altered expression in salivary adenoid cystic carcinoma. Am J Pathol 2002; 161: 1315–1323.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu P, Ramachandran S, Ali Seyed M, Scharer CD, Laycock N, Dalton WB et al. Sex-determining region Y box 4 is a transforming oncogene in human prostate cancer cells. Cancer Res 2006; 66: 4011–4019.

    CAS  PubMed  Google Scholar 

  60. Pramoonjago P, Baras AS, Moskaluk CA . Knockdown of Sox4 expression by RNAi induces apoptosis in ACC3 cells. Oncogene 2006; 25: 5626–5639.

    CAS  PubMed  Google Scholar 

  61. Pan D . The hippo signaling pathway in development and cancer. Dev Cell 2010; 19: 491–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Liao YL, Sun YM, Chau GY, Chau YP, Lai TC, Wang JL et al. Identification of SOX4 target genes using phylogenetic footprinting-based prediction from expression microarrays suggests that overexpression of SOX4 potentiates metastasis in hepatocellular carcinoma. Oncogene 2008; 27: 5578–5589.

    CAS  PubMed  Google Scholar 

  63. Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 2008; 451: 147–152.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kalluri R, Weinberg RA . The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119: 1420–1428.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Tessier-Lavigne M, Goodman CS . The molecular biology of axon guidance. Science 1996; 274: 1123–1133.

    CAS  PubMed  Google Scholar 

  66. Chedotal A, Kerjan G, Moreau-Fauvarque C . The brain within the tumor: new roles for axon guidance molecules in cancers. Cell Death Differ 2005; 12: 1044–1056.

    CAS  PubMed  Google Scholar 

  67. Herman JG, Meadows GG . Increased class 3 semaphorin expression modulates the invasive and adhesive properties of prostate cancer cells. Int J Oncol 2007; 30: 1231–1238.

    CAS  PubMed  Google Scholar 

  68. Bielenberg DR, Pettaway CA, Takashima S, Klagsbrun M . Neuropilins in neoplasms: expression, regulation, and function. Exp Cell Res 2006; 312: 584–593.

    CAS  PubMed  Google Scholar 

  69. Zhang J, Liang Q, Lei Y, Yao M, Li L, Gao X et al. SOX4 induces epithelial–mesenchymal transition and contributes to breast cancer progression. Cancer Res 2012; 72: 4597–4608.

    CAS  PubMed  Google Scholar 

  70. Zhang J, Liang Q, Lei Y, Yao M, Li L, Gao X et al. SOX4 induces epithelial–mesenchymal transition and contributes to breast cancer progression. Cancer Res 2012; 72: 4597–4608.

    CAS  PubMed  Google Scholar 

  71. Ruebel KH, Leontovich AA, Tanizaki Y, Jin L, Stilling GA, Zhang S et al. Effects of TGFbeta1 on gene expression in the HP75 human pituitary tumor cell line identified by gene expression profiling. Endocrine 2008; 33: 62–76.

    CAS  PubMed  Google Scholar 

  72. Locklin RM, Riggs BL, Hicok KC, Horton HF, Byrne MC, Khosla S . Assessment of gene regulation by bone morphogenetic protein 2 in human marrow stromal cells using gene array technology. J Bone Miner Res 2001; 16: 2192–2204.

    CAS  PubMed  Google Scholar 

  73. Lin B, Madan A, Yoon JG, Fang X, Yan X, Kim TK et al. Massively parallel signature sequencing and bioinformatics analysis identifies up-regulation of TGFBI and SOX4 in human glioblastoma. PLoS One 2010; 5: e10210.

    PubMed  PubMed Central  Google Scholar 

  74. Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K, Miyazono K et al. Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 2009; 5: 504–514.

    CAS  PubMed  Google Scholar 

  75. Ikushima H, Todo T, Ino Y, Takahashi M, Saito N, Miyazawa K et al. Glioma-initiating cells retain their tumorigenicity through integration of the Sox axis and Oct4 protein. J Biol Chem 2011; 286: 41434–41441.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Klaus A, Birchmeier W . Wnt signalling and its impact on development and cancer. Nat Rev Cancer 2008; 8: 387–398.

    CAS  PubMed  Google Scholar 

  77. Fevr T, Robine S, Louvard D, Huelsken J . Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol Cell Biol 2007; 27: 7551–7559.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Reichling T, Goss KH, Carson DJ, Holdcraft RW, Ley-Ebert C, Witte D et al. Transcriptional profiles of intestinal tumors in Apc(Min) mice are unique from those of embryonic intestine and identify novel gene targets dysregulated in human colorectal tumors. Cancer Res 2005; 65: 166–176.

    CAS  PubMed  Google Scholar 

  79. Sinner D, Kordich JJ, Spence JR, Opoka R, Rankin S, Lin SC et al. Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells. Mol Cell Biol 2007; 27: 7802–7815.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lee AK, Ahn SG, Yoon JH, Kim SA . Sox4 stimulates ss-catenin activity through induction of CK2. Oncol Rep 2011; 25: 559–565.

    CAS  PubMed  Google Scholar 

  81. Song DH, Sussman DJ, Seldin DC . Endogenous protein kinase CK2 participates in Wnt signaling in mammary epithelial cells. J Biol Chem 2000; 275: 23790–23797.

    CAS  PubMed  Google Scholar 

  82. Saegusa M, Hashimura M, Kuwata T . Sox4 functions as a positive regulator of beta-catenin signaling through upregulation of TCF4 during morular differentiation of endometrial carcinomas. Lab Invest 2012; 92: 511–521.

    CAS  PubMed  Google Scholar 

  83. Lai YH, Cheng J, Cheng D, Feasel ME, Beste KD, Peng J et al. SOX4 interacts with plakoglobin in a Wnt3a-dependent manner in prostate cancer cells. BMC Cell Biol 2011; 12: 50.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Andersen CL, Christensen LL, Thorsen K, Schepeler T, Sorensen FB, Verspaget HW et al. Dysregulation of the transcription factors SOX4, CBFB and SMARCC1 correlates with outcome of colorectal cancer. Br J Cancer 2009; 100: 511–523.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Polakis P . Wnt signaling in cancer. Cold Spring Harb Perspect Biol 2012;. 4.

  86. Scharer CD, McCabe CD, Ali-Seyed M, Berger MF, Bulyk ML, Moreno CS . Genome-wide promoter analysis of the SOX4 transcriptional network in prostate cancer cells. Cancer Res 2009; 69: 709–717.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Medina PP, Castillo SD, Blanco S, Sanz-Garcia M, Largo C, Alvarez S et al. The SRY-HMG box gene, SOX4, is a target of gene amplification at chromosome 6p in lung cancer. Hum Mol Genet 2009; 18: 1343–1352.

    CAS  PubMed  Google Scholar 

  88. Castillo SD, Matheu A, Mariani N, Carretero J, Lopez-Rios F, Lovell-Badge R et al. Novel transcriptional targets of the SRY-HMG box transcription factor SOX4 link its expression to the development of small cell lung cancer. Cancer Res 2011; 72: 176–186.

    PubMed  Google Scholar 

  89. Huang YW, Liu JC, Deatherage DE, Luo J, Mutch DG, Goodfellow PJ et al. Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer Res 2009; 69: 9038–9046.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Shen R, Pan S, Qi S, Lin X, Cheng S . Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 in gastric cancer. Biochem Biophys Res Commun 2010; 394: 1047–1052.

    CAS  PubMed  Google Scholar 

  91. Herbst RS . EGFR inhibition in NSCLC: the emerging role of cetuximab. J Natl Compr Canc Netw 2004; 2 (Suppl 2): S41–S51.

    CAS  PubMed  Google Scholar 

  92. Sitohy B, Nagy JA, Dvorak HF . Anti-VEGF/VEGFR therapy for cancer: reassessing the target. Cancer Res 2012; 72: 1909–1914.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Blick T, Hugo H, Widodo E, Waltham M, Pinto C, Mani SA et al. Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/−) stem cell phenotype in human breast cancer. J Mamm Gland Biol Neoplasia 2010; 15: 235–252.

    Google Scholar 

  94. Hua F, Mu R, Liu J, Xue J, Wang Z, Lin H et al. TRB3 interacts with SMAD3 promoting tumor cell migration and invasion. J Cell Sci 2011; 124: 3235–3246.

    CAS  PubMed  Google Scholar 

  95. Serrero G . Autocrine growth factor revisited: PC-cell-derived growth factor (progranulin), a critical player in breast cancer tumorigenesis. Biochem Biophys Res Commun 2003; 308: 409–413.

    CAS  PubMed  Google Scholar 

  96. Yang L, Xu L . GPR56 in cancer progression: current status and future perspective. Fut Oncol 2012; 8: 431–440.

    CAS  Google Scholar 

  97. Kindla J, Muller F, Mieth M, Fromm MF, Konig J . Influence of non-steroidal anti-inflammatory drugs on organic anion transporting polypeptide (OATP) 1B1- and OATP1B3-mediated drug transport. Drug Metab Dispos 2011; 39: 1047–1053.

    CAS  PubMed  Google Scholar 

  98. Hershko DD . Oncogenic properties and prognostic implications of the ubiquitin ligase Skp2 in cancer. Cancer 2008; 112: 1415–1424.

    CAS  PubMed  Google Scholar 

  99. de Bont JM, Kros JM, Passier MM, Reddingius RE, Sillevis Smitt PA, Luider TM et al. Differential expression and prognostic significance of SOX genes in pediatric medulloblastoma and ependymoma identified by microarray analysis. NeuroOncology 2008; 10: 648–660.

    CAS  Google Scholar 

  100. Aaboe M, Birkenkamp-Demtroder K, Wiuf C, Sorensen FB, Thykjaer T, Sauter G et al. SOX4 expression in bladder carcinoma: clinical aspects and in vitro functional characterization. Cancer Res 2006; 66: 3434–3442.

    CAS  PubMed  Google Scholar 

  101. Jafarnejad SM, Wani AA, Martinka M, Li G . Prognostic significance of Sox4 expression in human cutaneous melanoma and its role in cell migration and invasion. Am J Pathol 2010; 177: 2741–2752.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang C, Zhao H, Lu J, Yin J, Zang L, Song N et al. Clinicopathological significance of SOX4 expression in primary gallbladder carcinoma. Diagn Pathol 2012; 7: 41.

    PubMed  PubMed Central  Google Scholar 

  103. Pan X, Zhao J, Zhang WN, Li HY, Mu R, Zhou T et al. Induction of SOX4 by DNA damage is critical for p53 stabilization and function. Proc Natl Acad Sci USA 2009; 106: 3788–3793.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ahn SG, Kim HS, Jeong SW, Kim BE, Rhim H, Shim JY et al. Sox-4 is a positive regulator of Hep3B and HepG2 cells’ apoptosis induced by prostaglandin (PG)A(2) and delta(12)-PGJ(2). Exp Mol Med 2002; 34: 243–249.

    CAS  PubMed  Google Scholar 

  105. Ahn SG, Cho GH, Jeong SY, Rhim H, Choi JY, Kim IK . Identification of cDNAs for Sox-4, an HMG-Box protein, and a novel human homolog of yeast splicing factor SSF-1 differentially regulated during apoptosis induced by prostaglandin A2/delta12-PGJ2 in Hep3B cells. Biochem Biophys Res Commun 1999; 260: 216–221.

    CAS  PubMed  Google Scholar 

  106. Kim BE, Lee JH, Kim HS, Kwon OJ, Jeong SW, Kim IK . Involvement of Sox-4 in the cytochrome c-dependent AIF-independent apoptotic pathway in HeLa cells induced by Delta12-prostaglandin J2. Exp Mol Med 2004; 36: 444–453.

    CAS  PubMed  Google Scholar 

  107. Hur W, Rhim H, Jung CK, Kim JD, Bae SH, Jang JW et al. SOX4 overexpression regulates the p53-mediated apoptosis in hepatocellular carcinoma: clinical implication and functional analysis in vitro. Carcinogenesis 2010; 31: 1298–1307.

    CAS  PubMed  Google Scholar 

  108. Chetty C, Dontula R, Gujrati M, Dinh DH, Lakka SS . Blockade of SOX4 mediated DNA repair by SPARC enhances radioresponse in medulloblastoma. Cancer Lett 2012; 323: 188–198.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Boyer J, Allen WL, McLean EG, Wilson PM, McCulla A, Moore S et al. Pharmacogenomic identification of novel determinants of response to chemotherapy in colon cancer. Cancer Res 2006; 66: 2765–2777.

    CAS  PubMed  Google Scholar 

  110. Gunes S, Yegin Z, Sullu Y, Buyukalpelli R, Bagci H . SOX4 expression levels in urothelial bladder carcinoma. Pathol Res Pract 2011; 207: 423–427.

    CAS  PubMed  Google Scholar 

  111. Bruch J, Schulz WA, Haussler J, Melzner I, Bruderlein S, Moller P et al. Delineation of the 6p22 amplification unit in urinary bladder carcinoma cell lines. Cancer Res 2000; 60: 4526–4530.

    CAS  PubMed  Google Scholar 

  112. Jafarnejad SM, Ardekani GS, Ghaffari M, Martinka M, Li G . Sox4-mediated Dicer expression is critical for suppression of melanoma cell invasion. Oncogene 2012.

  113. Wu Q, Hoffmann MJ, Hartmann FH, Schulz WA . Amplification and overexpression of the ID4 gene at 6p22.3 in bladder cancer. Mol Cancer 2005; 4: 16.

    PubMed  PubMed Central  Google Scholar 

  114. Graham JD, Hunt SM, Tran N, Clarke CL . Regulation of the expression and activity by progestins of a member of the SOX gene family of transcriptional modulators. J Mol Endocrinol 1999; 22: 295–304.

    CAS  PubMed  Google Scholar 

  115. Pan X, Li H, Zhang P, Jin B, Man J, Tian L et al. Ubc9 interacts with SOX4 and represses its transcriptional activity. Biochem Biophys Res Commun 2006; 344: 727–734.

    CAS  PubMed  Google Scholar 

  116. Kim HD, Choe HK, Chung S, Kim M, Seong JY, Son GH et al. Class-C SOX transcription factors control GnRH gene expression via the intronic transcriptional enhancer. Mol Endocrinol 2011; 25: 1184–1196.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Marshall JC, Kelch RP . Gonadotropin-releasing hormone: role of pulsatile secretion in the regulation of reproduction. N Engl J Med 1986; 315: 1459–1468.

    CAS  PubMed  Google Scholar 

  118. Clemons M, Goss P . Estrogen and the risk of breast cancer. N Engl J Med 2001; 344: 276–285.

    CAS  PubMed  Google Scholar 

  119. Yager JD, Davidson NE . Estrogen carcinogenesis in breast cancer. N Engl J Med 2006; 354: 270–282.

    CAS  PubMed  Google Scholar 

  120. Dyrskjot L, Ostenfeld MS, Bramsen JB, Silahtaroglu AN, Lamy P, Ramanathan R et al. Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. Cancer Res 2009; 69: 4851–4860.

    CAS  PubMed  Google Scholar 

  121. Liu S, Patel SH, Ginestier C, Ibarra I, Martin-Trevino R, Bai S et al. MicroRNA93 regulates proliferation and differentiation of normal and malignant breast stem cells. PLoS Genet 2012; 8: e1002751.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Bernard P, Harley VR . Acquisition of SOX transcription factor specificity through protein–protein interaction, modulation of Wnt signalling and post-translational modification. Int J Biochem Cell Biol 2010; 42: 400–410.

    CAS  PubMed  Google Scholar 

  123. Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 2012; 40: D261–D270.

    CAS  PubMed  Google Scholar 

  124. Beekman JM, Coffer PJ . The ins and outs of syntenin, a multifunctional intracellular adaptor protein. J Cell Sci 2008; 121: 1349–1355.

    CAS  PubMed  Google Scholar 

  125. Sarkar D, Boukerche H, Su ZZ, Fisher PB . Mda-9/Syntenin: more than just a simple adapter protein when it comes to cancer metastasis. Cancer Res 2008; 68: 3087–3093.

    CAS  PubMed  Google Scholar 

  126. Watanabe T, Kobunai T, Yamamoto Y, Kanazawa T, Konishi T, Tanaka T et al. Prediction of liver metastasis after colorectal cancer using reverse transcription-polymerase chain reaction analysis of 10 genes. Eur J Cancer 2010; 46: 2119–2126.

    CAS  PubMed  Google Scholar 

  127. McCracken S, Kim CS, Xu Y, Minden M, Miyamoto NG . An alternative pathway for expression of p56lck from type I promoter transcripts in colon carcinoma. Oncogene 1997; 15: 2929–2937.

    CAS  PubMed  Google Scholar 

  128. Turner DP, Findlay VJ, Moussa O, Watson DK . Defining ETS transcription regulatory networks and their contribution to breast cancer progression. J Cell Biochem 2007; 102: 549–559.

    CAS  PubMed  Google Scholar 

  129. Wilson M, Koopman P . Matching SOX: partner proteins and co-factors of the SOX family of transcriptional regulators. Curr Opin Genet Dev 2002; 12: 441–446.

    CAS  PubMed  Google Scholar 

  130. Lee CJ, Appleby VJ, Orme AT, Chan WI, Scotting PJ . Differential expression of SOX4 and SOX11 in medulloblastoma. J Neurooncol 2002; 57: 201–214.

    PubMed  Google Scholar 

  131. Neben K, Korshunov A, Benner A, Wrobel G, Hahn M, Kokocinski F et al. Microarray-based screening for molecular markers in medulloblastoma revealed STK15 as independent predictor for survival. Cancer Res 2004; 64: 3103–3111.

    CAS  PubMed  Google Scholar 

  132. Yokota N, Mainprize TG, Taylor MD, Kohata T, Loreto M, Ueda S et al. Identification of differentially expressed and developmentally regulated genes in medulloblastoma using suppression subtraction hybridization. Oncogene 2004; 23: 3444–3453.

    CAS  PubMed  Google Scholar 

  133. Haram KM, Peltier HJ, Lu B, Bhasin M, Otu HH, Choy B et al. Gene expression profile of mouse prostate tumors reveals dysregulations in major biological processes and identifies potential murine targets for preclinical development of human prostate cancer therapy. Prostate 2008; 68: 1517–1530.

    CAS  PubMed  Google Scholar 

  134. Moreno CS . The sex-determining region Y-box 4 and homeobox C6 transcriptional networks in prostate cancer progression: crosstalk with the Wnt, Notch, and PI3K pathways. Am J Pathol 2010; 176: 518–527.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Vanaja DK, Ballman KV, Morlan BW, Cheville JC, Neumann RM, Lieber MM et al. PDLIM4 repression by hypermethylation as a potential biomarker for prostate cancer. Clin Cancer Res 2006; 12: 1128–1136.

    CAS  PubMed  Google Scholar 

  136. Bangur CS, Switzer A, Fan L, Marton MJ, Meyer MR, Wang T . Identification of genes over-expressed in small cell lung carcinoma using suppression subtractive hybridization and cDNA microarray expression analysis. Oncogene 2002; 21: 3814–3825.

    CAS  PubMed  Google Scholar 

  137. Friedman RS, Bangur CS, Zasloff EJ, Fan L, Wang T, Watanabe Y et al. Molecular and immunological evaluation of the transcription factor SOX-4 as a lung tumor vaccine antigen. J Immunol 2004; 172: 3319–3327.

    CAS  PubMed  Google Scholar 

  138. Heidenblad M, Lindgren D, Jonson T, Liedberg F, Veerla S, Chebil G et al. Tiling resolution array CGH and high density expression profiling of urothelial carcinomas delineate genomic amplicons and candidate target genes specific for advanced tumors. BMC Med Genomics 2008; 1: 3.

    PubMed  PubMed Central  Google Scholar 

  139. Fevre-Montange M, Champier J, Szathmari A, Wierinckx A, Mottolese C, Guyotat J et al. Microarray analysis reveals differential gene expression patterns in tumors of the pineal region. J Neuropathol Exp Neurol 2006; 65: 675–684.

    CAS  PubMed  Google Scholar 

  140. Litovkin KV, Ivanova OV, Bauer A, Hoheisel JD, Bubnov VV, Zaporozhan VN . Microarray study of gene expression in uterine leiomyoma. Exp Oncol 2008; 30: 106–111.

    CAS  PubMed  Google Scholar 

  141. Cao D, Hustinx SR, Sui G, Bala P, Sato N, Martin S et al. Identification of novel highly expressed genes in pancreatic ductal adenocarcinomas through a bioinformatics analysis of expressed sequence tags. Cancer Biol Ther 2004; 3: 1081–1089 discussion 90–1.

    CAS  PubMed  Google Scholar 

  142. Molatore S, Liyanarachchi S, Irmler M, Perren A, Mannelli M, Ercolino T et al. Pheochromocytoma in rats with multiple endocrine neoplasia (MENX) shares gene expression patterns with human pheochromocytoma. Proc Natl Acad Sci USA 2010; 107: 18493–18498.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Tian C, Shi H, Colledge C, Stern M, Waterston R, Liu J . The C. elegans SoxC protein SEM-2 opposes differentiation factors to promote a proliferative blast cell fate in the postembryonic mesoderm. Development 2011; 138: 1033–1043.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Ritter AR, Beckstead RB . Sox14 is required for transcriptional and developmental responses to 20-hydroxyecdysone at the onset of drosophila metamorphosis. Dev Dyn 2010; 239: 2685–2694.

    CAS  PubMed  Google Scholar 

  145. Sock E, Rettig SD, Enderich J, Bosl MR, Tamm ER, Wegner M . Gene targeting reveals a widespread role for the high-mobility-group transcription factor Sox11 in tissue remodeling. Mol Cell Biol 2004; 24: 6635–6644.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Lin L, Lee VM, Wang Y, Lin JS, Sock E, Wegner M et al. Sox11 regulates survival and axonal growth of embryonic sensory neurons. Dev Dyn 2011; 240: 52–64.

    CAS  PubMed  Google Scholar 

  147. Hoser M, Potzner MR, Koch JM, Bosl MR, Wegner M, Sock E . Sox12 deletion in the mouse reveals nonreciprocal redundancy with the related Sox4 and Sox11 transcription factors. Mol Cell Biol 2008; 28: 4675–4687.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Thein DC, Thalhammer JM, Hartwig AC, Crenshaw EB, Lefebvre V, Wegner M et al. The closely related transcription factors Sox4 and Sox11 function as survival factors during spinal cord development. J Neurochem 2010; 115: 131–141.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Ruben van Boxtel is supported by a ‘Center for Translational Molecular Medicine’ (CTMM) grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P J Coffer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vervoort, S., van Boxtel, R. & Coffer, P. The role of SRY-related HMG box transcription factor 4 (SOX4) in tumorigenesis and metastasis: friend or foe?. Oncogene 32, 3397–3409 (2013). https://doi.org/10.1038/onc.2012.506

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.506

Keywords

This article is cited by

Search

Quick links