Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

WIP1 phosphatase modulates the Hedgehog signaling by enhancing GLI1 function

Abstract

The Hedgehog-GLI (HH-GLI) signaling plays a critical role in controlling growth and tissue patterning during embryogenesis and is implicated in a variety of human malignancies, including those of the skin. Phosphorylation events have been shown to regulate the activity of the GLI transcription factors, the final effectors of the HH-GLI signaling pathway. Here, we show that WIP1 (or PPM1D), an oncogenic phosphatase amplified/overexpressed in several types of human cancer, is a positive modulator of the HH signaling. Mechanistically, WIP1 enhances the function of GLI1 by increasing its transcriptional activity, nuclear localization and protein stability, but not of GLI2 nor GLI3. We also find that WIP1 and GLI1 are in a complex. Modulation of the transcriptional activity of GLI1 by WIP1 depends on the latter’s phosphatase activity and, remarkably, does not require p53, a known WIP1 target. Functionally, we find that WIP1 is required for melanoma and breast cancer cell proliferation and self-renewal in vitro and melanoma xenograft growth induced by activation of the HH signaling. Pharmacological blockade of the HH pathway with the SMOOTHENED antagonist cyclopamine acts synergistically with inhibition of WIP1 in reducing growth of melanoma and breast cancer cells in vitro. Overall, our data uncover a role for WIP1 in modulating the activity of GLI1 and in sustaining cancer cell growth and cancer stem cell self-renewal induced by activation of the HH pathway. These findings open a novel therapeutic approach for human melanomas and, possibly, other cancer types expressing WIP1 and with activated HH pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ingham PW, McMahon AP . Hedgehog signaling in animal development: paradigms and principles. Genes Dev 2001; 15: 3059–3087.

    Article  CAS  PubMed  Google Scholar 

  2. Varjosalo M, Taipale J . Hedgehog: functions and mechanisms. Genes Dev 2008; 22: 2454–2472.

    Article  CAS  PubMed  Google Scholar 

  3. Beachy PA, Karhadkar SS, Berman DM . Tissue repair and stem cell renewal in carcinogenesis. Nature 2004; 432: 324–331.

    Article  CAS  PubMed  Google Scholar 

  4. Teglund S, Toftgård R . Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim Biophys Acta 2010; 1805: 181–208.

    CAS  PubMed  Google Scholar 

  5. Ng JM, Curran T . The Hedgehog's tale: developing strategies for targeting cancer. Nat Rev Cancer 2011; 11: 493–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rohatgi R, Scott MP . Patching the gaps in Hedgehog signalling. Nat Cell Biol 2007; 9: 1005–1009.

    Article  CAS  PubMed  Google Scholar 

  7. Jiang J, Hui CC . Hedgehog signaling in development and cancer. Dev Cell 2008; 15: 801–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stecca B, Ruiz i Altaba A . Context-dependent regulation of the GLI code in cancer by HEDGEHOG and non-HEDGEHOG signals. J Mol Cell Biol 2010; 2: 84–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 1996; 85: 841–851.

    Article  CAS  PubMed  Google Scholar 

  10. Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 1996; 272: 1668–1671.

    Article  CAS  PubMed  Google Scholar 

  11. Xie J, Murone M, Luoh SM, Ryan A, Gu Q, Zhang C et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 1998; 391: 90–92.

    Article  CAS  PubMed  Google Scholar 

  12. Kasper M, Schnidar H, Neill GW, Hanneder M, Klingler S, Blaas L et al. Selective modulation of Hedgehog/GLI target gene expression by epidermal growth factor signaling in human keratinocytes. Mol Cell Biol 2006; 26: 6283–6298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dennler S, André J, Alexaki I, Li A, Magnaldo T, ten Dijke P et al. Induction of sonic hedgehog mediators by transforming growth factor-beta: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo. Cancer Res 2007; 67: 6981–6986.

    Article  CAS  PubMed  Google Scholar 

  14. Stecca B, Mas C, Clement V, Zbinden M, Correa R, Piguet V et al. Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc Natl Acad Sci USA 2007; 104: 5895–5900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nolan-Stevaux O, Lau J, Truitt ML, Chu GC, Hebrok M, Fernández-Zapico ME et al. GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation. Genes Dev 2009; 23: 24–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eberl M, Klingler S, Mangelberger D, Loipetzberger A, Damhofer H, Zoidl K et al. Hedgehog-EGFR cooperation response genes determine the oncogenic phenotype of basal cell carcinoma and tumour-initiating pancreatic cancer cells. EMBO Mol Med 2012; 4: 218–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang Y, Ding Q, Yen CJ, Xia W, Izzo JG, Lang JY et al. The crosstalk of mTOR/S6K1 and Hedgehog pathways. Cancer Cell 2012; 21: 374–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stecca B, Ruiz i Altaba A . A GLI1-p53 inhibitory loop controls neural stem cell and tumour cell numbers. EMBO J 2009; 28: 663–676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hershko T, Korotayev K, Polager S, Ginsberg D . E2F1 modulates p38 MAPK phosphorylation via transcriptional regulation of ASK1 and Wip1. J Biol Chem 2006; 281: 31309–31316.

    Article  CAS  PubMed  Google Scholar 

  20. Fiscella M, Zhang H, Fan S, Sakaguchi K, Shen S, Mercer WE et al. Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc Natl Acad Sci USA 1997; 94: 6048–6053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Choi J, Nannenga B, Demidov ON, Bulavin DV, Cooney A, Brayton C et al. Mice deficient for the wild-type p53-induced phosphatase gene (Wip1) exhibit defects in reproductive organs, immune function, and cell cycle control. Mol Cell Biol 2002; 22: 1094–1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu YH, Zhang CW, Lu L, Demidov ON, Sun L, Yang L et al. Wip1 regulates the generation of new neural cells in the adult olfactory bulb through p53-dependent cell cycle control. Stem Cells 2009; 27: 1433–1442.

    Article  CAS  PubMed  Google Scholar 

  23. Le Guezennec X, Brichkina A, Huang YF, Kostromina E, Han W, Bulavin DV . Wip1-dependent regulation of autophagy, obesity, and atherosclerosis. Cell Metab 2012; 16: 68–80.

    Article  CAS  PubMed  Google Scholar 

  24. Bulavin DV, Demidov ON, Saito S, Kauraniemi P, Phillips C, Amundson SA et al. Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nature Genet 2002; 31: 210–215.

    Article  CAS  PubMed  Google Scholar 

  25. Li J, Yang Y, Peng Y, Austin RJ, van Eyndhoven WG, Nguyen KC et al. Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23. Nat Genet 2002; 31: 133–134.

    Article  CAS  PubMed  Google Scholar 

  26. Hirasawa A, Saito-Ohara F, Inoue J, Aoki D, Susumu N, Yokoyama T et al. Association of 17q21-q24 gain in ovarian clear cell adenocarcinomas with poor prognosis and identification of PPM1D and APPBP2 as likely amplification targets. Clin Cancer Res 2003; 9: 1995–2004.

    CAS  PubMed  Google Scholar 

  27. Castellino RC, De Bortoli M, Lu X, Moon SH, Nguyen TA, Shepard MA et al. Medulloblastomas overexpress the p53-Inactivating oncogene Wip1/PPM1D. J Neurooncol 2008; 86: 245–256.

    Article  CAS  PubMed  Google Scholar 

  28. Nannenga B, Lu X, Dumble M, Van Maanen M, Nguyen TA, Sutton R et al. Augmented cancer resistance and DNA damage response phenotypes in PPM1D null mice. Mol Carcinog 2006; 45: 594–604.

    Article  CAS  PubMed  Google Scholar 

  29. Bulavin DV, Phillips C, Nannenga B, Timofeev O, Donehower LA, Anderson CW et al. Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway. Nat Genet 2004; 36: 343–350.

    Article  CAS  PubMed  Google Scholar 

  30. Demidov ON, Timofeev O, Lwin HN, Kek C, Appella E, Bulavin DV . Wip1 phosphatase regulates p53-dependent apoptosis of stem cells and tumorigenesis in the mouse intestine. Cell Stem Cell 2007; 1: 180–190.

    Article  CAS  PubMed  Google Scholar 

  31. Demidov ON, Kek C, Shreeram S, Timofeev O, Fornace AJ, Appella E et al. The role of the MKK6/p38 MAPK pathway in Wip1-dependent regulation of ErbB2-driven mammary gland tumorigenesis. Oncogene 2007; 26: 2502–2506.

    Article  CAS  PubMed  Google Scholar 

  32. Lu X, Nannenga B, Donehower LA . PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Genes Dev 2005; 19: 1162–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shreeram S, Demidov ON, Hee WK, Yamaguchi H, Onishi N, Kek C et al. Wip1 phosphatase modulates ATM-dependent signaling pathways. Mol Cell 2006; 23: 757–764.

    Article  CAS  PubMed  Google Scholar 

  34. Fujimoto H, Onishi N, Kato N, Takekawa M, Xu XZ, Kosugi A et al. Regulation of the antioncogenic Chk2 kinase by the oncogenic Wip1 phosphatase. Cell Death Differ 2006; 13: 1170–1180.

    Article  CAS  PubMed  Google Scholar 

  35. Takekawa M, Adachi M, Nakahata A, Nakayama I, Itoh F, Tsukuda H et al. P53-inducible wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J 2000; 19: 6517–6526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu X, Ma O, Nguyen TA, Jones SN, Oren M, Donehower LA . The Wip1 phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop. Cancer Cell 2007; 12: 342–354.

    Article  CAS  PubMed  Google Scholar 

  37. Cha H, Lowe JM, Li H, Lee JS, Belova GI, Bulavin DV et al. Wip1 directly dephosphorylates gamma-H2AX and attenuates the DNA damage response. Cancer Res 2010; 70: 4112–4122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liang C, Guo E, Lu S, Wang S, Kang C, Chang L et al. Over-expression of Wild-type p53-induced phosphatase 1 confers poor prognosis of patients with gliomas. Brain Res 2012; 1444: 65–75.

    Article  CAS  PubMed  Google Scholar 

  39. Rayter S, Elliott R, Travers J, Rowlands MG, Richardson TB, Boxall K et al. A chemical inhibitor of PPM1D that selectively kills cells overexpressing PPM1D. Oncogene 2008; 27: 1036–1044.

    Article  CAS  PubMed  Google Scholar 

  40. Chen JK, Taipale J, Young KE, Maiti T, Beachy PA . Small molecule modulation of Smoothened activity. Proc Natl Acad Sci USA 2002; 99: 14071–14076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY, Reiter JF . Vertebrate Smoothened functions at the primary cilium. Nature 2005; 437: 1018–1021.

    Article  CAS  PubMed  Google Scholar 

  42. Rohatgi R, Milenkovic L, Scott MP . Patched1 regulates hedgehog signaling at the primary cilium. Science 2007; 317: 372–376.

    Article  CAS  PubMed  Google Scholar 

  43. Pan Y, Wang B . A novel protein-processing domain in Gli2 and Gli3 differentially blocks complete protein degradation by the proteasome. J Biol Chem 2007; 282: 10846–10852.

    Article  CAS  PubMed  Google Scholar 

  44. Huntzicker EG, Estay IS, Zhen H, Lokteva LA, Jackson PK, Oro AE . Dual degradation signals control Gli protein stability and tumor formation. Genes Dev 2006; 20: 276–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kogerman P, Grimm T, Kogerman L, Krause D, Undén AB, Sandstedt B et al. Mammalian Suppressor-of-Fused modulates nuclear-cytoplasmic shuttling of GLI1. Nat Cell Biol 1999; 1: 312–319.

    Article  CAS  PubMed  Google Scholar 

  46. Pärssinen J, Alarmo EL, Karhu R, Kallioniemi A . PPM1D silencing by RNA interference inhibits proliferation and induces apoptosis in breast cancer cell lines with wild-type p53. Cancer Genet Cytogenet 2008; 182: 33–39.

    Article  PubMed  Google Scholar 

  47. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A . HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 2007; 17: 165–172.

    Article  CAS  PubMed  Google Scholar 

  48. Peacock CD, Wang Q, Gesell GS, Corcoran-Schwartz IM, Jones E, Kim J et al. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci USA 2007; 104: 4048–4053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Varnat F, Duquet A, Malerba M, Zbinden M, Mas C, Gervaz P et al. Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signaling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med 2009; 1: 338–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 2006; 66: 6063–6071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Santini R, Vinci MC, Pandolfi S, Penachioni JY, Montagnani V, Olivito B et al. HEDGEHOG-GLI signaling drives self-renewal and tumorigenicity of human melanoma-initiating cells. Stem Cells 2012; 30: 1808–1818.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang X, Wan G, Mlotshwa S, Vance V, Berger FG, Chen H et al. Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Res 2010; 70: 7176–7186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Doucette TA, Yang Y, Pedone C, Kim JY, Dubuc A, Northcott PD et al. WIP1 enhances tumor formation in a Sonic Hedgehog-dependent model of medulloblastoma. Neurosurgery 2011; 70: 1003–1010.

    Article  Google Scholar 

  54. Taipale J, Chen JK, Cooper MK, Wang B, Mann RK, Milenkovic L et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 2000; 406: 1005–1009.

    Article  CAS  PubMed  Google Scholar 

  55. Jia H, Liu Y, Yan W, Jia J . PP4 and PP2A regulate Hedgehog signaling by controlling Smo and Ci phosphorylation. Development 2009; 136: 307–316.

    Article  CAS  PubMed  Google Scholar 

  56. Krauss S, Foerster J, Schneider R, Schweiger S . Protein phosphatase 2A and rapamycin regulate the nuclear localization and activity of the transcription factor GLI3. Cancer Res 2008; 68: 4658–4665.

    Article  CAS  PubMed  Google Scholar 

  57. Krauss S, So J, Hambrock M, Köhler A, Kunath M, Scharff C et al. Point mutations in GLI3 lead to misregulation of its subcellular localization. PLoS One 2009; 4: e7471.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rorick AM, Mei W, Liette NL, Phiel C, El-Hodiri HM, Yang J . PP2A:B56epsilon is required for eye induction and eye field separation. Dev Biol 2007; 302: 477–493.

    Article  CAS  PubMed  Google Scholar 

  59. Jin Z, Mei W, Strack S, Jia J, Yang J . The antagonistic action of B56-containing protein phosphatase 2As and casein kinase 2 controls the phosphorylation and Gli turnover function of Daz interacting protein 1. J Biol Chem 2011; 286: 36171–36179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lu X, Nguyen TA, Moon SH, Darlington Y, Sommer M, Donehower LA . The type 2C phosphatase Wip1: an oncogenic regulator of tumor suppressor and DNA damage response pathways. Cancer Metastasis Rev 2008; 27: 123–135.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Abe Y, Oda-Sato E, Tobiume K, Kawauchi K, Taya Y, Okamoto K et al. Hedgehog signaling overrides p53-mediated tumor suppression by activating Mdm2. Proc Natl Acad Sci USA 2008; 105: 4838–4843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lai K, Robertson MJ, Schaffer DV . The sonic hedgehog signaling system as a bistable genetic switch. Biophys J 2004; 86: 2748–2757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lai K, Kaspar BK, Gage FH, Schaffer DV . Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci 2003; 6: 21–27.

    Article  CAS  PubMed  Google Scholar 

  64. Chin L, Garraway LA, Fisher DE . Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev 2006; 20: 2149–2182.

    Article  CAS  PubMed  Google Scholar 

  65. Gray-Schopfer V, Wellbrock C, Marais R . Melanoma biology and new targeted therapy. Nature 2007; 445: 851–857.

    Article  CAS  PubMed  Google Scholar 

  66. Das S, Harris LG, Metge BJ, Liu S, Riker AI, Samant RS et al. The hedgehog pathway transcription factor GLI1 promotes malignant behavior of cancer cells by up-regulating osteopontin. J Biol Chem 2009; 284: 22888–22897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Castresana JS, Rubio MP, Vázquez JJ, Idoate M, Sober AJ, Seizinger BR et al. Lack of allelic deletion and point mutation as mechanisms of p53 activation in human malignant melanoma. Int J Cancer 1993; 55: 562–565.

    Article  CAS  PubMed  Google Scholar 

  68. Low JA, de Sauvage FJ . Clinical experience with Hedgehog pathway inhibitors. J Clin Oncol 2010; 28: 5321–5326.

    Article  CAS  PubMed  Google Scholar 

  69. Yamaguchi H, Durell SR, Feng H, Bai Y, Anderson CW, Appella E . Development of a substrate-based cyclic phosphopeptide inhibitor of protein phosphatase 2Cdelta, Wip1. Biochemistry 2006; 45: 13193–13202.

    Article  CAS  PubMed  Google Scholar 

  70. Hayashi R, Tanoue K, Durell SR, Chatterjee DK, Jenkins LM, Appella DH et al. Optimization of a cyclic peptide inhibitor of Ser/Thr phosphatase PPM1D (Wip1). Biochemistry 2011; 50: 4537–4549.

    Article  CAS  PubMed  Google Scholar 

  71. Roessler E, Ermilov AN, Grange DK, Wang A, Grachtchouk M, Dlugosz AA et al. A previously unidentified amino-terminal domain regulates transcriptional activity of wild-type and disease-associated human GLI2. Hum Mol Genet 2005; 14: 2181–2188.

    Article  CAS  PubMed  Google Scholar 

  72. Lindqvist A, de Bruijn M, Macurek L, Brás A, Mensinga A, Bruinsma W et al. Wip1 confers G2 checkpoint recovery competence by counteracting p53-dependent transcriptional repression. EMBO J 2009; 28: 3196–3206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sasaki H, Hui C, Nakafuku M, Kondoh H . A binding site for Gli proteins is essential for HNF-3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development 1997; 124: 1313–1322.

    CAS  PubMed  Google Scholar 

  74. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 817–825.

    Article  CAS  PubMed  Google Scholar 

  75. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003; 17: 1253–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G Del Sal, A Ruiz i Altaba, L Luzzatto for helpful comments on the paper and discussion. We are grateful to G Del Sal (Laboratorio Nazionale CIB, Padriciano, Italy) for HCT116 p53wt and p53ko cells, A Ruiz i Altaba (University of Geneva, Geneva, Switzerland), H Sasaki (NCCRI, Tokyo, Japan), RH Medema (University of Utrecht, Utrecht, The Netherlands) for plasmids, G Gerlini (S Maria Annunziata Hospital, Florence, Italy) for help in obtaining samples, E Rovida (University of Florence, Florence, Italy) for assistance with confocal microscopy. This work was supported by grants from Associazione Italiana per la Ricerca sul Cancro (AIRC, 9566), Regional Health Research Program 2009 and Fondazione Cassa di Risparmio di Firenze to BS. SP was supported by AIRC fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Stecca.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandolfi, S., Montagnani, V., Penachioni, J. et al. WIP1 phosphatase modulates the Hedgehog signaling by enhancing GLI1 function. Oncogene 32, 4737–4747 (2013). https://doi.org/10.1038/onc.2012.502

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.502

Keywords

This article is cited by

Search

Quick links